J. Semicond. > Volume 41?>?Issue 3?> Article Number: 032305

Analysis of the time domain characteristics of tapered semiconductor lasers

Desheng Zeng 1, 2, , Li Zhong 1, , , Suping Liu 1, and Xiaoyu Ma 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings. We analyze the influence of the length of second order gratings on the power and spectrum of output light, and optimizing the length of gratings, in order to reduce the mode competition effect in the device, and obtain the high power output light wave with good longitudinal mode characteristics.

Key words: tapered semiconductor laserstime domain characteristicsDBR gratingsmode competition

Abstract: We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings. We analyze the influence of the length of second order gratings on the power and spectrum of output light, and optimizing the length of gratings, in order to reduce the mode competition effect in the device, and obtain the high power output light wave with good longitudinal mode characteristics.

Key words: tapered semiconductor laserstime domain characteristicsDBR gratingsmode competition



References:

[1]

Sun S M, Fan J, Xu L, et al. Research progress of conical semiconductor lasers. Chin Opt, 2019, 12(01), 48

[2]

Zhou X Y, Zhao S Y, Ma X L, et al. Low vertical divergence angle high brightness photonic crystal semiconductor laser. Chin J Lasers, 2017, 44(2), 0201010

[3]

Liu Y Q, Cao Y H, Li J, et al. 5 kW fiber coupled semiconductor laser for laser processing. Opt Prec Eng, 2015, 23(05), 1279

[4]

Paschke K, Sumpf B, Dittmar F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W. IEEE J Sel Top Quantum Electron, 2005, 11(5), 1223

[5]

Jia P, Liu X L, Chen Y Y, et al. Study of dual wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings. Chin J Lasers, 2015(8), 37

[6]

Aho A T, Viheri?l? J, M Korpij?rvi V M, et al. High-power 1180-nm GaInNAs DBR laser diodes. IEEE Photonics Technol Lett, 2017, 29(23), 2023

[7]

Fan J, Gong C Y, Yang J J, et al. Research progress of distributed prague reflector semiconductor lasers. Progr Laser Optoelectron, 2019, 56(06), 34

[8]

Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm. Appl Phys B, 2016, 122(4), 87

[9]

Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. J Appl Phys, 1972, 43(5), 2327

[10]

Dente G C, Tilton M L. Modeling multiple-longitudinal-mode dynamics in semiconductor lasers. IEEE J Quantum Electron, 1998, 34(2), 325

[11]

Hasler K H, Wenzel H, Klehr A, et al. Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers. IEE Proceedings-Optoelectronics, 2002, 149(4), 152

[12]

Radziunas M. Modeling and simulations of broad-area edge-emitting semiconductor devices. Intl J High Perform Comput Appl, 2018, 32(4), 512

[13]

Vahala K, Yariv A. Semiclassical theory of noise in semiconductor lasers-Part I. IEEE J Quantum Electron, 1983, 19(6), 1096

[14]

Vahala K, A Yariv A. Semiclassical theory of noise in semiconductor lasers-Part II. IEEE J Quantum Electron, 1983, 19(6), 1102

[15]

Zhang L M, Yu S F, Nowell M C, et al. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J Quantum Electron, 1994, 30(6), 1389

[16]

Dente G C, Tilton M L, Bossert D J, et al. Time-dependent modeling of the MFA-MOPA. In: Laser Diodes and Applications II. International Society for Optics and Photonics, 1996, 2682: 48

[17]

De Melo A M, Petermann K. On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt Commun, 2008, 281(18), 4598

[18]

Marcuse D. Computer simulation of laser photon fluctuations: Theory of single-cavity laser. IEEE J Quantum Electron, 1984, 20(10), 1139

[19]

Borruel L, Odriozola H, Tijero J M G, et al. Design strategies to increase the brightness of gain guided tapered lasers. Opt Quantum Electron, 2008, 40(2–4), 175

[20]

Spreemann M, Lichtner M, Radziunas M, et al. Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers. IEEE J Quantum Electron, 2009, 45(6), 609

[21]

Qiao C, Su R G, Li X, et al. Design and technology of 980 nm high power DBR semiconductor laser. Chin Laser, 2019, 46(7), 0701002

[22]

Wang W X, Lu Y X. Analysis of sampling grating characteristics of distributed feedback semiconductor lasers. Laser J, 2018, 39(10), 57

[1]

Sun S M, Fan J, Xu L, et al. Research progress of conical semiconductor lasers. Chin Opt, 2019, 12(01), 48

[2]

Zhou X Y, Zhao S Y, Ma X L, et al. Low vertical divergence angle high brightness photonic crystal semiconductor laser. Chin J Lasers, 2017, 44(2), 0201010

[3]

Liu Y Q, Cao Y H, Li J, et al. 5 kW fiber coupled semiconductor laser for laser processing. Opt Prec Eng, 2015, 23(05), 1279

[4]

Paschke K, Sumpf B, Dittmar F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W. IEEE J Sel Top Quantum Electron, 2005, 11(5), 1223

[5]

Jia P, Liu X L, Chen Y Y, et al. Study of dual wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings. Chin J Lasers, 2015(8), 37

[6]

Aho A T, Viheri?l? J, M Korpij?rvi V M, et al. High-power 1180-nm GaInNAs DBR laser diodes. IEEE Photonics Technol Lett, 2017, 29(23), 2023

[7]

Fan J, Gong C Y, Yang J J, et al. Research progress of distributed prague reflector semiconductor lasers. Progr Laser Optoelectron, 2019, 56(06), 34

[8]

Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm. Appl Phys B, 2016, 122(4), 87

[9]

Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. J Appl Phys, 1972, 43(5), 2327

[10]

Dente G C, Tilton M L. Modeling multiple-longitudinal-mode dynamics in semiconductor lasers. IEEE J Quantum Electron, 1998, 34(2), 325

[11]

Hasler K H, Wenzel H, Klehr A, et al. Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers. IEE Proceedings-Optoelectronics, 2002, 149(4), 152

[12]

Radziunas M. Modeling and simulations of broad-area edge-emitting semiconductor devices. Intl J High Perform Comput Appl, 2018, 32(4), 512

[13]

Vahala K, Yariv A. Semiclassical theory of noise in semiconductor lasers-Part I. IEEE J Quantum Electron, 1983, 19(6), 1096

[14]

Vahala K, A Yariv A. Semiclassical theory of noise in semiconductor lasers-Part II. IEEE J Quantum Electron, 1983, 19(6), 1102

[15]

Zhang L M, Yu S F, Nowell M C, et al. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J Quantum Electron, 1994, 30(6), 1389

[16]

Dente G C, Tilton M L, Bossert D J, et al. Time-dependent modeling of the MFA-MOPA. In: Laser Diodes and Applications II. International Society for Optics and Photonics, 1996, 2682: 48

[17]

De Melo A M, Petermann K. On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt Commun, 2008, 281(18), 4598

[18]

Marcuse D. Computer simulation of laser photon fluctuations: Theory of single-cavity laser. IEEE J Quantum Electron, 1984, 20(10), 1139

[19]

Borruel L, Odriozola H, Tijero J M G, et al. Design strategies to increase the brightness of gain guided tapered lasers. Opt Quantum Electron, 2008, 40(2–4), 175

[20]

Spreemann M, Lichtner M, Radziunas M, et al. Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers. IEEE J Quantum Electron, 2009, 45(6), 609

[21]

Qiao C, Su R G, Li X, et al. Design and technology of 980 nm high power DBR semiconductor laser. Chin Laser, 2019, 46(7), 0701002

[22]

Wang W X, Lu Y X. Analysis of sampling grating characteristics of distributed feedback semiconductor lasers. Laser J, 2018, 39(10), 57

[1]

Hao Luo, Cheng’ao Yang, Shengwen Xie, Xiaoli Chai, Shushan Huang, Yu Zhang, Yingqiang Xu, Zhichuan Niu. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007

[2]

Fang Dawei, Zhang Yi, Li Chenxia, Manzaneda C, Li Bo. Effect of DBR Geometry on Reflectivity and Spectral Linewidth of DBR Lasers. J. Semicond., 2005, 26(12): 2315.

[3]

Kenyu Osada, Hiroyasu Katsuno, Toshiharu Irisawa, Yukio Saito. Scaling relation of domain competition on (2+1)-dimensional ballistic deposition model with surface diffusion. J. Semicond., 2016, 37(9): 092001. doi: 10.1088/1674-4926/37/9/092001

[4]

Tian Liqiang, Shi Wei. Delayed-Dipole Domain Mode of Semi-Insulating GaAs Photoconductive Semiconductor Switches. J. Semicond., 2007, 28(6): 819.

[5]

Wentao Guo, Manqing Tan, Jian Jiao, Xiaofeng Guo, Ningning Sun. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency. J. Semicond., 2014, 35(8): 084007. doi: 10.1088/1674-4926/35/8/084007

[6]

Gao Yu, Liu Fengqi, Liu Junqi, Li Lu, Wang Lijun, Wang Zhanguo. Tapered quantum cascade lasers operating at 9.0 μm. J. Semicond., 2010, 31(3): 034008. doi: 10.1088/1674-4926/31/3/034008

[7]

Zhang Ruikang, Dong Lei, Wang Dingli, Zhang Jing, Chen Lei, Jiang Shan, Yu Yonglin. Sampled Grating DBR Lasers with 35nm Quasi-Continuous Tuning Range. J. Semicond., 2008, 29(12): 2301.

[8]

Li Jing, Liu Yuanyuan, Ma Xiaoyu. High-Brightness Tapered Diode Lasers Emitting at 980nm with Electrically Separated Ridge Waveguide and Tapered Section. J. Semicond., 2007, 28(8): 1302.

[9]

Liu Yang, Ye Nan, Wang Baojun, Zhou Daibing, An Xin, Bian Jing, Pan Jiaoqing, Zhao Lingjuan, Wang Wei. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier. J. Semicond., 2010, 31(7): 074003. doi: 10.1088/1674-4926/31/7/074003

[10]

Tian Liqiang, Shi Wei. Quenched-Domain Mode of Photo-Activated Charge Domain in Semi-Insulating GaAs Devices. J. Semicond., 2008, 29(10): 1913.

[11]

Jingbi You. Perovskite plasmonic lasers capable of mode modulation. J. Semicond., 2019, 40(7): 070203. doi: 10.1088/1674-4926/40/7/070203

[12]

Hongqi Jing, Cong Xiong, Zhen Dong, Nan Lin, Qiong Qi, Li Zhong, Suping Liu, Xiaoyu Ma. An exploration of slab-coupled semiconductor lasers. J. Semicond., 2014, 35(5): 054007. doi: 10.1088/1674-4926/35/5/054007

[13]

Li Jing, Ma Xiaoyu, Liu Yuanyuan. High-Power Ridge-Waveguide Tapered Diode Lasers at 980nm. J. Semicond., 2007, 28(5): 645.

[14]

Li Jing, Ma Xiaoyu, Wang Jun. High-Power Ridge-Waveguide Tapered Diode Lasers at 14xxnm. J. Semicond., 2007, 28(1): 108.

[15]

Liu Fengqi, Guo Yu, Li Lu, Shao Ye, Liu Junqi, Lu Xiuzhen, Wang Zhanguo. Single Mode Operation of Short-Cavity Quantum Cascade Lasers. J. Semicond., 2006, 27(4): 679.

[16]

Zhenhai Chen, Hongwen Qian, Songren Huang, Hong Zhang, Zongguang Yu. A low power time-interleaved 10-bit 250-MSPS charge domain pipelined ADC for IF sampling. J. Semicond., 2013, 34(6): 065005. doi: 10.1088/1674-4926/34/6/065005

[17]

Liu Wei, Li Wei, Ren Peng, Lin Qinglong, Zhang Shengdong, Wang Yangyuan. A time-domain digitally controlled oscillator composed of a free running ring oscillator and flying-adder. J. Semicond., 2009, 30(9): 095004. doi: 10.1088/1674-4926/30/9/095004

[18]

Yang Siyu, Zhang Hui, Fu Wenhui, Yi Ting, Hong Zhiliang. A low power 12-bit 200-kS/s SAR ADC with a differential time domain comparator. J. Semicond., 2011, 32(3): 035002. doi: 10.1088/1674-4926/32/3/035002

[19]

Xue Han, Hua Fan, Qi Wei, Huazhong Yang. A high SFDR 6-bit 20-MS/s SAR ADC based on time-domain comparator. J. Semicond., 2013, 34(8): 085008. doi: 10.1088/1674-4926/34/8/085008

[20]

Chenluan Wang, Shengxi Diao, Fujiang Lin. A low-power time-domain VCO-based ADC in 65 nm CMOS. J. Semicond., 2014, 35(10): 105009. doi: 10.1088/1674-4926/35/10/105009

Search

Advanced Search >>

GET CITATION

D S Zeng, L Zhong, S P Liu, X Y Ma, Analysis of the time domain characteristics of tapered semiconductor lasers[J]. J. Semicond., 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305.

Export: BibTex EndNote

Article Metrics

Article views: 159 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 24 May 2019 Manuscript revised: 17 October 2019 Online: Accepted Manuscript: 08 November 2019 Uncorrected proof: 18 February 2020 Published: 01 March 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图