J. Semicond. > Volume 41?>?Issue 7?> Article Number: 072903

Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs

Hailong Wang 1, 2, , Jialin Ma 1, 2, , Qiqi Wei 1, 2, and Jianhua Zhao 1, 2, 3, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: The Mn doping effects on the gate-tunable transport properties of topological Dirac semimetal Cd3As2 films have been investigated. Mn-doped Cd3As2 films are directly grown on GaAs(111)B substrates by molecular-beam epitaxy, during which the single crystal phase can be obtained with Mn concentration less than 2%. Shubnikov-de Haas oscillation and quantum Hall effect are observed at low temperatures, and electrons are found to be the dominant carrier in the whole temperature range. Higher Mn content results in smaller lattice constant, lower electron mobility and larger effective band gap, while the carrier density seems to be unaffected by Mn-doping. Gating experiments show that Shubnikov-de Haas oscillation and quantum Hall effect are slightly modulated by electric field, which can be explained by the variation of electron density. Our results provide useful information for understanding the magnetic element doping effects on the transport properties of Cd3As2 films.

Key words: molecular-beam epitaxyDirac semimetalCd3As2 filmMn dopingquantum transport

Abstract: The Mn doping effects on the gate-tunable transport properties of topological Dirac semimetal Cd3As2 films have been investigated. Mn-doped Cd3As2 films are directly grown on GaAs(111)B substrates by molecular-beam epitaxy, during which the single crystal phase can be obtained with Mn concentration less than 2%. Shubnikov-de Haas oscillation and quantum Hall effect are observed at low temperatures, and electrons are found to be the dominant carrier in the whole temperature range. Higher Mn content results in smaller lattice constant, lower electron mobility and larger effective band gap, while the carrier density seems to be unaffected by Mn-doping. Gating experiments show that Shubnikov-de Haas oscillation and quantum Hall effect are slightly modulated by electric field, which can be explained by the variation of electron density. Our results provide useful information for understanding the magnetic element doping effects on the transport properties of Cd3As2 films.

Key words: molecular-beam epitaxyDirac semimetalCd3As2 filmMn dopingquantum transport



References:

[1]

Wang Z J, Weng H M, Wu Q S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88, 125427

[2]

Ali M N, Gibson Q, Jeon S, et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg Chem, 2014, 53, 4062

[3]

Borisenko S, Gibson Q, Evtushinsky D, et al. Experimental realization of a three-dimensional Dirac semimetal. Phys Rev Lett, 2014, 113, 027603

[4]

Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 677

[5]

Jeon S, Zhou B B, Gyenis A, et al. Landau quantization and quasipartical interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 851

[6]

Neupane M, Xu S Y, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5, 3786

[7]

Potter A C, Kimchi I, Vishwanath A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat Commun, 2014, 5, 5161

[8]

He L P, Hong X C, Dong J K, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett, 2014, 113, 246402

[9]

Liang T, Gibson Q, Ali M N, et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat Mater, 2015, 14, 280

[10]

Zhao Y F, Liu H W, Zhang C L, et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys Rev X, 2015, 5, 031037

[11]

Jiang Z J, Zhao D, Jin Z, et al. Angular-dependent phase factor of Shubnikov-de Haas oscillations in the Dirac semimetal Cd3As2. Phys Rev Lett, 2015, 115, 226401

[12]

Moll P J W, Nair N L, Helm T, et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535, 366

[13]

Zhang C, Narayan A, Lu S H, et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 1272

[14]

Wang C M, Sun H P, Lu H Z, et al. 3D quantum Hall effect of Fermi arcs in topological semimetals. Phys Rev Lett, 2017, 119, 136806

[15]

Uchida M, Nakazawa Y, Nishihaya S, et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 2274

[16]

Schumann T, Galletti L, Kealhofer D A, et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys Rev Lett, 2018, 120, 016801

[17]

Goyal M, Galletti L, Salmani-Rezaie S, et al. Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2. APL Mater, 2018, 6, 026105

[18]

Zhang C, Zhang Y, Yuan X, et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 331, 565

[19]

Lin B C, Wang S, Wiedmann S, et al. Observation of an odd-integer quantum Hall effect from topological surface states in Cd3As2. Phys Rev Lett, 2019, 122, 036602

[20]

Zhang Y, Zhang C, Gao H X, et al. Large Hall angle-driven magneto-transport phenomena in topological Dirac semimetal Cd3As2. Appl Phys Lett, 2018, 113, 072104

[21]

Nishihaya S, Uchida M, Nakazawa Y, et al. Quantized surface transport in topological Dirac semimetal films. Nat Commun, 2019, 10, 2564

[22]

Li C Z, Wang L X, Liu H W, et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat Commun, 2015, 6, 10137

[23]

Li H, He H T, Lu H Z, et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat Commun, 2016, 7, 10301

[24]

Aggarwal L, Gaurav A, Thakur G S, et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat Mater, 2016, 15, 32

[25]

Wang H, Wang H C, Liu H W, et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nat Mater, 2016, 15, 38

[26]

Wang A Q, Li C Z, Li C, et al. 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys Rev Lett, 2018, 121, 237701

[27]

Huang C, Zhou B T, Zhang H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat Commun, 2019, 10, 2217

[28]

Wang L X, Li C Z, Yu D P, et al. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat Commun, 2016, 7, 10769

[29]

Wang L X, Wang S, Li J G, et al. Universal conductance fluctuation in Dirac semimetal Cd3As2 nanowires. Phys Rev B, 2016, 94, 161402

[30]

Wang S, Lin B C, Zheng W Z, et al. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys Rev Lett, 2018, 120, 257701

[31]

Zhou T, Zhang C, Zhang H S, et al. Enhanced thermoelectric properties of the Dirac semimeatl Cd3As2. Inorg Chem Front, 2016, 3, 1637

[32]

Jia Z Z, Li C Z, Li X Q, et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat Commun, 2016, 7, 13013

[33]

Zhu C H, Wang F Q, Meng Y F, et al. A robust and tunable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun, 2017, 8, 14111

[34]

Wang Q S, Li C Z, Ge S F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett, 2017, 17, 834

[35]

Liu Y W, Zhang C, Yuan X, et al. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Mater, 2015, 7, e221

[36]

Li C Z, Li J G, Wang L X, et al. Two-carrier transport induced Hall anomaly and large tunable magnetoresistance in Dirac semimetal Cd3As2 nanoplates. ACS Nano, 2016, 10, 6020

[37]

Goyal M, Kim H, Schumann T, et al. Surface states of strained thin films of the Dirac semimetal Cd3As2. Phys Rev Mater, 2019, 3, 064204

[38]

Jin H, Dai Y, Ma Y D, et al. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal Cd3As2. J Mater Chem C, 2015, 3, 3547

[39]

Liu Y W, Tiwari R, Narayan A, et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films. Phys Rev B, 2018, 97, 085303

[40]

Yuan X, Chen P H, Zhang L Q, et al. Direct observation of landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films. Nano Lett, 2017, 17, 2211

[41]

Sun Y, Meng Y F, Dai R H, et al. Slowing down photocarrier relaxation in Dirac semimetal Cd3As2 via Mn doping. Opt Lett, 2019, 44, 4103

[42]

Zakhvalinskii V S, Nikulicheva T B, Lahderanta E, et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1– x yZn xMn y)3As2 solid solutions. J Phys Condens Matter, 2017, 29, 455701

[43]

Schumann T, Goyal M, Kim H, et al. Molecular beam epitaxy of Cd3As2 on a III–V substrate. APL Mater, 2016, 4, 126110

[44]

Nakazawa Y, Uchida M, Nishihaya S, et al. Molecular beam epitaxy of three-dimensionally thick Dirac semimetal Cd3As2 films. APL Mater, 2019, 7, 071109

[45]

Kealhofer D A, Kim H, Schumann T. Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys Rev Mater, 2019, 3, 031201

[46]

Wang H L, Ma J L, Yu X Z, et al. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures. J Phys D, 2017, 50, 025003

[47]

Wang H L, Ma J L, Zhao J H. Giant modulation of magnetism in (Ga,Mn)As ultrathin films via electric field. J Semicond, 2019, 40, 092501

[1]

Wang Z J, Weng H M, Wu Q S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88, 125427

[2]

Ali M N, Gibson Q, Jeon S, et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg Chem, 2014, 53, 4062

[3]

Borisenko S, Gibson Q, Evtushinsky D, et al. Experimental realization of a three-dimensional Dirac semimetal. Phys Rev Lett, 2014, 113, 027603

[4]

Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 677

[5]

Jeon S, Zhou B B, Gyenis A, et al. Landau quantization and quasipartical interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 851

[6]

Neupane M, Xu S Y, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5, 3786

[7]

Potter A C, Kimchi I, Vishwanath A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat Commun, 2014, 5, 5161

[8]

He L P, Hong X C, Dong J K, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett, 2014, 113, 246402

[9]

Liang T, Gibson Q, Ali M N, et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat Mater, 2015, 14, 280

[10]

Zhao Y F, Liu H W, Zhang C L, et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys Rev X, 2015, 5, 031037

[11]

Jiang Z J, Zhao D, Jin Z, et al. Angular-dependent phase factor of Shubnikov-de Haas oscillations in the Dirac semimetal Cd3As2. Phys Rev Lett, 2015, 115, 226401

[12]

Moll P J W, Nair N L, Helm T, et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535, 366

[13]

Zhang C, Narayan A, Lu S H, et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 1272

[14]

Wang C M, Sun H P, Lu H Z, et al. 3D quantum Hall effect of Fermi arcs in topological semimetals. Phys Rev Lett, 2017, 119, 136806

[15]

Uchida M, Nakazawa Y, Nishihaya S, et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 2274

[16]

Schumann T, Galletti L, Kealhofer D A, et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys Rev Lett, 2018, 120, 016801

[17]

Goyal M, Galletti L, Salmani-Rezaie S, et al. Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2. APL Mater, 2018, 6, 026105

[18]

Zhang C, Zhang Y, Yuan X, et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 331, 565

[19]

Lin B C, Wang S, Wiedmann S, et al. Observation of an odd-integer quantum Hall effect from topological surface states in Cd3As2. Phys Rev Lett, 2019, 122, 036602

[20]

Zhang Y, Zhang C, Gao H X, et al. Large Hall angle-driven magneto-transport phenomena in topological Dirac semimetal Cd3As2. Appl Phys Lett, 2018, 113, 072104

[21]

Nishihaya S, Uchida M, Nakazawa Y, et al. Quantized surface transport in topological Dirac semimetal films. Nat Commun, 2019, 10, 2564

[22]

Li C Z, Wang L X, Liu H W, et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat Commun, 2015, 6, 10137

[23]

Li H, He H T, Lu H Z, et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat Commun, 2016, 7, 10301

[24]

Aggarwal L, Gaurav A, Thakur G S, et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat Mater, 2016, 15, 32

[25]

Wang H, Wang H C, Liu H W, et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nat Mater, 2016, 15, 38

[26]

Wang A Q, Li C Z, Li C, et al. 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys Rev Lett, 2018, 121, 237701

[27]

Huang C, Zhou B T, Zhang H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat Commun, 2019, 10, 2217

[28]

Wang L X, Li C Z, Yu D P, et al. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat Commun, 2016, 7, 10769

[29]

Wang L X, Wang S, Li J G, et al. Universal conductance fluctuation in Dirac semimetal Cd3As2 nanowires. Phys Rev B, 2016, 94, 161402

[30]

Wang S, Lin B C, Zheng W Z, et al. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys Rev Lett, 2018, 120, 257701

[31]

Zhou T, Zhang C, Zhang H S, et al. Enhanced thermoelectric properties of the Dirac semimeatl Cd3As2. Inorg Chem Front, 2016, 3, 1637

[32]

Jia Z Z, Li C Z, Li X Q, et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat Commun, 2016, 7, 13013

[33]

Zhu C H, Wang F Q, Meng Y F, et al. A robust and tunable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun, 2017, 8, 14111

[34]

Wang Q S, Li C Z, Ge S F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett, 2017, 17, 834

[35]

Liu Y W, Zhang C, Yuan X, et al. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Mater, 2015, 7, e221

[36]

Li C Z, Li J G, Wang L X, et al. Two-carrier transport induced Hall anomaly and large tunable magnetoresistance in Dirac semimetal Cd3As2 nanoplates. ACS Nano, 2016, 10, 6020

[37]

Goyal M, Kim H, Schumann T, et al. Surface states of strained thin films of the Dirac semimetal Cd3As2. Phys Rev Mater, 2019, 3, 064204

[38]

Jin H, Dai Y, Ma Y D, et al. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal Cd3As2. J Mater Chem C, 2015, 3, 3547

[39]

Liu Y W, Tiwari R, Narayan A, et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films. Phys Rev B, 2018, 97, 085303

[40]

Yuan X, Chen P H, Zhang L Q, et al. Direct observation of landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films. Nano Lett, 2017, 17, 2211

[41]

Sun Y, Meng Y F, Dai R H, et al. Slowing down photocarrier relaxation in Dirac semimetal Cd3As2 via Mn doping. Opt Lett, 2019, 44, 4103

[42]

Zakhvalinskii V S, Nikulicheva T B, Lahderanta E, et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1– x yZn xMn y)3As2 solid solutions. J Phys Condens Matter, 2017, 29, 455701

[43]

Schumann T, Goyal M, Kim H, et al. Molecular beam epitaxy of Cd3As2 on a III–V substrate. APL Mater, 2016, 4, 126110

[44]

Nakazawa Y, Uchida M, Nishihaya S, et al. Molecular beam epitaxy of three-dimensionally thick Dirac semimetal Cd3As2 films. APL Mater, 2019, 7, 071109

[45]

Kealhofer D A, Kim H, Schumann T. Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys Rev Mater, 2019, 3, 031201

[46]

Wang H L, Ma J L, Yu X Z, et al. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures. J Phys D, 2017, 50, 025003

[47]

Wang H L, Ma J L, Zhao J H. Giant modulation of magnetism in (Ga,Mn)As ultrathin films via electric field. J Semicond, 2019, 40, 092501

[1]

Zhifeng Yu, Hailong Wang, Jialin Ma, Shucheng Tong, Jianhua Zhao. Magneto-transport properties of the off-stoichiometric Co2MnAl film epitaxially grown on GaAs (001). J. Semicond., 2019, 40(5): 052501. doi: 10.1088/1674-4926/40/5/052501

[2]

Lixia Li, Dong Pan, Xuezhe Yu, Hyok So, Jianhua Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy. J. Semicond., 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001

[3]

Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

[4]

Yang Jinghai, Yang Lili, Zhang Yongjun, Liu Wenyan, Wang Dandan, Lang Jihui, Zhao Qingxiang. Ground-State Transition Energy in GaInNAs/GaAs Quantum Well Structures. J. Semicond., 2006, 27(11): 1945.

[5]

Xiaosong Zhao, Weihua Han, Hao Wang, Liuhong Ma, Xiaoming Li, Wang Zhang, Wei Yan, Fuhua Yang. Dopant atoms as quantum components in silicon nanoscale devices. J. Semicond., 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003

[6]

Bi Jingfeng, Zhao Jianhua, Deng Jiajun, Zheng Yuhong, Wang Weizhu, Li Shushen. Growth,Structure and Magnetic Property of zb-CrAs Films on Different Buffers of InGaAs and GaAs. J. Semicond., 2007, 28(S1): 204.

[7]

Xia Yanqiu, Wu Shuxiang, Liu Yajing, Yu Xiaolong, Li Shuwei. Characterization of Diluted Magnetic Semiconductor Mn0.1Ti0.9O2-δ Thin Film Grown by Molecular Beam Epitaxy. J. Semicond., 2007, 28(7): 1058.

[8]

Jiaqi Wei, Kumsong Kim, Fang Liu, Ping Wang, Xiantong Zheng, Zhaoying Chen, Ding Wang, Ali Imran, Xin Rong, Xuelin Yang, Fujun Xu, Jing Yang, Bo Shen, Xinqiang Wang. β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. J. Semicond., 2019, 40(1): 012802. doi: 10.1088/1674-4926/40/1/012802

[9]

Zhang Yu, Wang Guowei, Tang Bao, Xu Yingqiang, Xu Yun, Song Guofeng. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. J. Semicond., 2011, 32(10): 103002. doi: 10.1088/1674-4926/32/10/103002

[10]

He Jifang, Shang Xiangjun, Li Mifeng, Zhu Yan, Chang Xiuying, Ni Haiqiao, Xu Yingqiang, Niu Zhichuan. Influence of growth temperatures on the quality of InGaAs/GaAs quantum well structure grown on Ge substrate by molecular beam epitaxy. J. Semicond., 2011, 32(4): 043004. doi: 10.1088/1674-4926/32/4/043004

[11]

Niu Zhichuan, Ni Haiqiao, Fang Zhidan, Gong Zheng, Zhang Shiyong, Wu Donghai, Sun Zheng, Zhao Huan, Peng Hongling, Han Qin, Wu Ronghan. 1.3μm InGaAs/InAs/GaAs Self-Assembled Quantum Dot Laser Diode Grown by Molecular Beam Epitaxy. J. Semicond., 2006, 27(3): 482.

[12]

Zhu Yan, Li Mifeng, He Jifang, Yu Ying, Ni Haiqiao, Xu Yingqiang, Wang Juan, He Zhenhong, Niu Zhichuan. GaAs-based long-wavelength InAs bilayer quantum dots grown by molecular beam epitaxy. J. Semicond., 2011, 32(8): 083001. doi: 10.1088/1674-4926/32/8/083001

[13]

Yingjie Ma, Tong Zhou, Zhenyang Zhong, Zuimin Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy. J. Semicond., 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004

[14]

Yuanqi Huang, Zhengwei Chen, Xiao Zhang, Xiaolong Wang, Yusong Zhi, Zhenping Wu, Weihua Tang. The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film. J. Semicond., 2018, 39(5): 053002. doi: 10.1088/1674-4926/39/5/053002

[15]

Fuyou Liao, Hongjuan Wang, Xiaojiao Guo, Zhongxun Guo, Ling Tong, Antoine Riaud, Yaochen Sheng, Lin Chen, Qingqing Sun, Peng Zhou, David Wei Zhang, Yang Chai, Xiangwei Jiang, Yan Liu, Wenzhong Bao. Charge transport and quantum confinement in MoS2 dual-gated transistors. J. Semicond., 2020, 41(7): 072904. doi: 10.1088/1674-4926/41/7/072904

[16]

Liu Linsheng, Wang Wenxin, Liu Su, Zhao Hongming, Liu Baoli, Jiang Zhongwei, Gao Hanchao, Wang Jia, Huang Qing’an, Chen Hong, Zhou Junming. Growth of AlGaAs on GaAs (110) Surface by Molecular Beam Epitaxy. J. Semicond., 2007, 28(9): 1411.

[17]

Pi Biao, Shu Yongchun, Lin Yaowang, Xu Bo, Yao Jianghong, Xing Xiaodong, Qu Shengchun, Wang Zhanguo. Growth Modes of InP Epilayers Grown by Solid Source Molecular Beam Epitaxy. J. Semicond., 2007, 28(S1): 28.

[18]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

[19]

Zhang Jijun, Jie Wanqi. Growth and Properties of Cd0.8Mn0.2Te Crystal. J. Semicond., 2006, 27(6): 1026.

[20]

Lin Guoqiang, Zeng Yiping, Wang Xiaoliang, Liu Hongxin. Effect of a Metal Buffer Layer on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia. J. Semicond., 2008, 29(10): 1998.

Search

Advanced Search >>

GET CITATION

H L Wang, J L Ma, Q Q Wei, J H Zhao, Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. J. Semicond., 2020, 41(7): 072903. doi: 10.1088/1674-4926/41/7/072903.

Export: BibTex EndNote

Article Metrics

Article views: 222 Times PDF downloads: 20 Times Cited by: 0 Times

History

Manuscript received: 29 March 2020 Manuscript revised: 22 April 2020 Online: Accepted Manuscript: 26 May 2020 Uncorrected proof: 15 June 2020 Published: 02 July 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图