J. Semicond. >  In Press

First principles study of the electronic structure and photovoltaic properties of β-CuGaO2 with MBJ + U approach

Guoping Luo 1, , Yingmei Bian 1, , Ruifeng Wu 1, , Guoxia Lai 1, , Xiangfu Xu 1, , Weiwei Zhang 2, and Xingyuan Chen 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Based on the density functional theory, the energy band and electronic structure of β-CuGaO2 are calculated by the modified Becke-Johnson plus an on-site Coulomb U (MBJ + U) approach in this paper. The calculated results show that the band gap value of β-CuGaO2 obtained by the MBJ + U approach is close to the experimental value. The calculated results of electronic structure indicate that the main properties of the material are determined by the bond between Cu-3d and O-2p energy levels near the valence band of β-CuGaO2, while a weak anti-bond combination is formed mainly by the O-2p energy level and Ga-4s energy level near the bottom of the conduction band of β-CuGaO2. The β-CuGaO2 thin film is predicted to hold excellent photovoltaic performance by analysis of the spectroscopic limited maximum efficiency (SLME) method. At the same time, the calculated maximum photoelectric conversion efficiency of the ideal CuGaO2 solar cell is 32.4%. Relevant conclusions can expand β-CuGaO2 photovoltaic applications.

Key words: first principlesβ-CuGaO2electronic structurephotovoltaic properties

Abstract: Based on the density functional theory, the energy band and electronic structure of β-CuGaO2 are calculated by the modified Becke-Johnson plus an on-site Coulomb U (MBJ + U) approach in this paper. The calculated results show that the band gap value of β-CuGaO2 obtained by the MBJ + U approach is close to the experimental value. The calculated results of electronic structure indicate that the main properties of the material are determined by the bond between Cu-3d and O-2p energy levels near the valence band of β-CuGaO2, while a weak anti-bond combination is formed mainly by the O-2p energy level and Ga-4s energy level near the bottom of the conduction band of β-CuGaO2. The β-CuGaO2 thin film is predicted to hold excellent photovoltaic performance by analysis of the spectroscopic limited maximum efficiency (SLME) method. At the same time, the calculated maximum photoelectric conversion efficiency of the ideal CuGaO2 solar cell is 32.4%. Relevant conclusions can expand β-CuGaO2 photovoltaic applications.

Key words: first principlesβ-CuGaO2electronic structurephotovoltaic properties



References:

[1]

Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics, 2012, 6(12), 809

[2]

Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Tech, 2005, 20(4), S35

[3]

Klingshirn C. The luminescence of ZnO under high one- and two-quantum excitation. Phys Status Solidi B, 1975, 71(2), 547

[4]

Tang H, Prasad K, Sanjines R, et al. Electrical and optical properties of TiO2 anatase thin films. J Appl Phys, 1994, 75(4), 2042

[5]

Baumeister P W. Optical absorption of cuprous oxide. Phys Rev, 1961, 121(2), 359

[6]

Omata T, Nagatani H, Suzuki I, et al. Wurtzite-derived ternary I–III–O2 semiconductors. Sci Tech Adv Mater, 2015, 16(2), 024902

[7]

Omata T, Nagatani H, Suzuki I, et al. Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. J Am Chem Soc, 2014, 136(9), 3378

[8]

Song S, Kim D, Jang H M, et al. β-CuGaO2 as a strong candidate material for efficient ferroelectric photovoltaics. Chem Mater, 2017, 29(17), 7596

[9]

Berglund C N, Braun H J. Optical absorption in single-domain ferroelectric barium titanate. Phys Rev, 1967, 164(2), 790

[10]

Ji W, Yao K, Liang Y C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv Mater, 2010, 22(15), 1763

[11]

Okumura H, Sato K, Kakeshita T. Electronic structure, defect formation energy, and photovoltaic properties of wurtzite-derived CuGaO2. J Appl Phys, 2018, 123(16), 161584

[12]

Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B, 2006, 73(19), 195107

[13]

Suzuki I, Nagatani H, Kita M, et al. First principles calculations of ternary wurtzite β-CuGaO2. J Appl Phys, 2016, 119(9), 095701

[14]

Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118(18), 8207

[15]

Shishkin M, Kresse G. Implementation and performance of the frequency-dependent G W method within the PAW framework. Phys Rev B, 2006, 74(3), 035101

[16]

Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J Comput Chem, 2008, 29(13), 2044

[17]

Yu L, Zunger A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys Rev Lett, 2012, 108(6), 068701

[18]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6(1), 15

[19]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev. B, 1999, 59, 1758

[20]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett, 1996, 77, 3865

[21]

Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B, 1995, 52(8), R5467

[22]

Becke A D, Johnson E R. A simple effective potential for exchange. J Chem Phys, 2006, 124, 221101

[23]

Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett, 2009, 102(22), 226401

[24]

Zhang Y, Wang Y, Xi L, et al. Electronic structure of antifluorite Cu2X (X= S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U. J Chem Phys, 2014, 140(7), 074702

[25]

Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510

[26]

Huang X, Paudel T R, Dong S, et al. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys Rev B, 2015, 92(12), 125201

[27]

Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovolt: Res Appl, 2015, 23(1), 1

[1]

Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics, 2012, 6(12), 809

[2]

Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Tech, 2005, 20(4), S35

[3]

Klingshirn C. The luminescence of ZnO under high one- and two-quantum excitation. Phys Status Solidi B, 1975, 71(2), 547

[4]

Tang H, Prasad K, Sanjines R, et al. Electrical and optical properties of TiO2 anatase thin films. J Appl Phys, 1994, 75(4), 2042

[5]

Baumeister P W. Optical absorption of cuprous oxide. Phys Rev, 1961, 121(2), 359

[6]

Omata T, Nagatani H, Suzuki I, et al. Wurtzite-derived ternary I–III–O2 semiconductors. Sci Tech Adv Mater, 2015, 16(2), 024902

[7]

Omata T, Nagatani H, Suzuki I, et al. Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. J Am Chem Soc, 2014, 136(9), 3378

[8]

Song S, Kim D, Jang H M, et al. β-CuGaO2 as a strong candidate material for efficient ferroelectric photovoltaics. Chem Mater, 2017, 29(17), 7596

[9]

Berglund C N, Braun H J. Optical absorption in single-domain ferroelectric barium titanate. Phys Rev, 1967, 164(2), 790

[10]

Ji W, Yao K, Liang Y C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv Mater, 2010, 22(15), 1763

[11]

Okumura H, Sato K, Kakeshita T. Electronic structure, defect formation energy, and photovoltaic properties of wurtzite-derived CuGaO2. J Appl Phys, 2018, 123(16), 161584

[12]

Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B, 2006, 73(19), 195107

[13]

Suzuki I, Nagatani H, Kita M, et al. First principles calculations of ternary wurtzite β-CuGaO2. J Appl Phys, 2016, 119(9), 095701

[14]

Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118(18), 8207

[15]

Shishkin M, Kresse G. Implementation and performance of the frequency-dependent G W method within the PAW framework. Phys Rev B, 2006, 74(3), 035101

[16]

Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J Comput Chem, 2008, 29(13), 2044

[17]

Yu L, Zunger A. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys Rev Lett, 2012, 108(6), 068701

[18]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6(1), 15

[19]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev. B, 1999, 59, 1758

[20]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett, 1996, 77, 3865

[21]

Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B, 1995, 52(8), R5467

[22]

Becke A D, Johnson E R. A simple effective potential for exchange. J Chem Phys, 2006, 124, 221101

[23]

Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett, 2009, 102(22), 226401

[24]

Zhang Y, Wang Y, Xi L, et al. Electronic structure of antifluorite Cu2X (X= S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U. J Chem Phys, 2014, 140(7), 074702

[25]

Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510

[26]

Huang X, Paudel T R, Dong S, et al. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys Rev B, 2015, 92(12), 125201

[27]

Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovolt: Res Appl, 2015, 23(1), 1

[1]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[2]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[3]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[4]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[5]

Yun Jiangni, Zhang Zhiyong, Deng Zhouhu, Zhang Fuchun. First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO3. J. Semicond., 2006, 27(9): 1537.

[6]

Wan Qixin, Xiong Zhihua, Rao Jianping, Dai Jiangnan, Le Shuping, Wang Guping, Jiang Fengyi. First-Principles Calculation of ZnO Doped with Ag. J. Semicond., 2007, 28(5): 696.

[7]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[8]

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

[9]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[10]

Shujuan Jiao, Jinliang Yan, Guipeng Sun, Yinnü Zhao. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles. J. Semicond., 2016, 37(7): 072001. doi: 10.1088/1674-4926/37/7/072001

[11]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[12]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[13]

Guipeng Sun, Jinliang Yan, Peijiang Niu, Delan Meng. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J. Semicond., 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[14]

Su Xiyu, Zhi Xiaofen, Hou Qinying, Cheng Wei, Liu Jiaxue. First principles study of the Be–C co-doped MgB2 system. J. Semicond., 2009, 30(11): 112001. doi: 10.1088/1674-4926/30/11/112001

[15]

Yinnü Zhao, Jinliang Yan. Effects of N concentration on electronic and optical properties of N-doped PbTiO3. J. Semicond., 2015, 36(9): 093005. doi: 10.1088/1674-4926/36/9/093005

[16]

Haitao Li, Jun Qian, Fangfang Han, Tinghui Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003

[17]

Yinnü Zhao, Jinliang Yan. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides. J. Semicond., 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

[18]

Li Jingbo, Wang Linwang, Wei Suhuai. Electronic Structure of Semiconductor Nanocrystals. J. Semicond., 2006, 27(2): 191.

[19]

Kaiwu Luo, Lingling Wang, Quan Li, Tong Chen, Liang Xu. First-principles calculations of half-metallic ferromagnetism in zigzag boron-nitride nanoribbons jointed with a single Fe-chain. J. Semicond., 2015, 36(8): 082003. doi: 10.1088/1674-4926/36/8/082005

[20]

Yang Pei, Haibin Wu, Jingmin Liu. Optimized geometry and electronic structure of three-dimensional β-graphyne. J. Semicond., 2015, 36(7): 072002. doi: 10.1088/1674-4926/36/7/072002

Search

Advanced Search >>

Article Metrics

Article views: 54 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 12 December 2019 Manuscript revised: 13 January 2020 Online: Accepted Manuscript: 26 February 2020 Uncorrected proof: 27 February 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图