J. Semicond. > Volume 40?>?Issue 12?> Article Number: 121803

The fabrication of AlN by hydride vapor phase epitaxy

Maosong Sun 1, 2, , Jinfeng Li 1, , Jicai Zhang 1, 2, , and Wenhong Sun 2, 3,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Aluminum nitride (AlN) is the promising substrates material for the epitaxial growth of III-nitrides devices, such as high-power, high-frequency electronic, deep ultraviolet optoelectronics and acoustic devices. However, it is rather difficult to obtain the high quality and crack-free thick AlN wafers because of the low surface migration of Al adatoms and the large thermal and lattice mismatches between the foreign substrates and AlN. In this work, the fabrication of AlN material by hydride vapor phase epitaxy (HVPE) was summarized and discussed. At last, the outlook of the production of AlN by HVPE was prospected.

Key words: hydride vapor phase epitaxyaluminum nitridetemplatesfree standing substrate

Abstract: Aluminum nitride (AlN) is the promising substrates material for the epitaxial growth of III-nitrides devices, such as high-power, high-frequency electronic, deep ultraviolet optoelectronics and acoustic devices. However, it is rather difficult to obtain the high quality and crack-free thick AlN wafers because of the low surface migration of Al adatoms and the large thermal and lattice mismatches between the foreign substrates and AlN. In this work, the fabrication of AlN material by hydride vapor phase epitaxy (HVPE) was summarized and discussed. At last, the outlook of the production of AlN by HVPE was prospected.

Key words: hydride vapor phase epitaxyaluminum nitridetemplatesfree standing substrate



References:

[1]

Avrutin V, Silversmith D J, Mori Y, et al. Growth of bulk GaN and AlN: progress and challenges. Proc IEEE, 2010, 98, 1302

[2]

Paskova T, Hanser D A, Evans K R. GaN substrates for III-nitride devices. Proc IEEE, 2010, 98, 1324

[3]

Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs — An overview of device operation and applications. Proc IEEE, 2002, 90, 1022

[4]

Adivarahan V, Sun W H, Chitnis A, et al. 250 nm AlGaN light-emitting diodes. Appl Phys Lett, 2004, 85, 2175

[5]

Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 071901

[6]

Jain R, Sun W, Yang J, et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett, 2008, 93, 051113

[7]

Zhang J C, Zhu Y H, Egawa T, et al. Suppression of the subband parasitic peak by 1 nm i-AlN interlayer in AlGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 2008, 93, 131117

[8]

Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 2009, 206, 1176

[9]

Susilo N, Hagedorn S, D, Jaeger D, et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 2018, 112, 041110

[10]

Adivarahan V, Wu S, Sun W H, et al. High-power deep ultraviolet light-emitting diodes based on a micro-pixel design. Appl Phys Lett, 2004, 85, 1838

[11]

Sun W H, Zhang J P, Adivarahan V, et al. AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1.5 mW. Appl Phys Lett, 2004, 85, 531

[12]

Zhang J C, Zhu Y H, Egawa T, et al. Quantum-well and localized state emissions in AlInGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 2007, 91, 221906

[13]

Zhang J C, Sakai Y, Egawa T. Low-temperature electroluminescence quenching of AlGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 2010, 96, 013503

[14]

Shatalov M, Sun W H, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5, 082101

[15]

Tan S X, Zhang J C, Egawa T, et al. Influence of quantum-well width on the electroluminescence properties of AlGaN deep ultraviolet light-emitting diodes at different temperatures. Nanoscale Res Lett, 2018, 13, 334

[16]

Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Tech, 2011, 26, 014036

[17]

Yano M, Okamoto M, Yap Y K, et al. Growth of nitride crystals, BN, AlN and GaN by using a Na flux. Diam Relat Mater, 2000, 9, 512

[18]

Kangawa Y, Toki R, Yayama T, et al. Novel solution growth method of bulk AlN using Al and Li3N solid sources. Appl Phys Express, 2011, 4, 095501

[19]

Wang B G, Callahan M J. Ammonothermal synthesis of III-nitride crystals. Cryst Growth Des, 2006, 6, 1227

[20]

Slack G A, Mcnelly T F. Growth of high-purity AlN crystals. J Cryst Growth, 1976, 34, 263

[21]

Herro Z G, Zhuang D, Schlesser R, et al. Growth of AlN single crystalline boules. J Cryst Growth, 2010, 312, 2519

[22]

Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 2008, 310, 4020

[23]

Makarov Y N, Avdeev O V, Barash I S, et al. Experimental and theoretical analysis of sublimation growth of AlN bulk crystals. J Cryst Growth, 2008, 310, 881

[24]

Hartmann C, Dittmar A, Wollweber J, et al. Bulk AlN growth by physical vapour transport. Semicond Sci Tech, 2014, 29, 084002

[25]

Bai J, Dudley M, Sun W H, et al. Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification. Appl Phys Lett, 2006, 88, 051903

[26]

Imura M, Fujimoto N, Okada N, et al. Annihilation mechanism of threading dislocations in AlN grown by growth form modification, method using V/III ratio. J Cryst Growth, 2007, 300, 136

[27]

Banal R G, Funato M, Kawakamia Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl Phys Lett, 2008, 92, 241905

[28]

Takeuchi M, Ooishi S, Ohtsuka T, et al. Improvement of AI-polar AIN layer quality by three-stage flow-modulation metalorganic chemical vapor deposition. Appl Phys Express, 2008, 1, 021102

[29]

Zhang L S, Xu F J, Wang J M, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep-Uk, 2016, 6, 35934

[30]

Lee D, Lee J W, Jang J, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl Phys Lett, 2017, 110, 191103

[31]

Long H L, Dai J N, Zhang Y, et al. High quality 10.6 μm AIN grown on pyramidal patterned sapphire substrate by MOCVD. Appl Phys Lett, 2019, 114, 042101

[32]

Freitas J A, Braga G C B, Moore W J, et al. Structural and optical properties of thick freestanding GaN templates. J Cryst Growth, 2001, 231, 322

[33]

Liu L, Edgar J H. Substrates for gallium nitride epitaxy. Mat Sci Eng R, 2002, 37, 61

[34]

Timoshkin A Y, Bettinger H F, Schaefer H F. The chemical vapor deposition of aluminum nitride: Unusual cluster formation in the gas phase. J Am Chem Soc, 1997, 119, 5668

[35]

Kumagai Y, Yamane T, Miyaji T, et al. Hydride vapor phase epitaxy of AlN: thermodynamic analysis of aluminum source and its application to growth. Phys Status Solidi C, 2003, 0, 2498

[36]

Ledyaev O Y, Cherenkov A E, Nikolaev A E, et al. Properties of AlN layers grown on SiC substrates in wide temperature range by HVPE. International Workshop on Nitride Semiconductors, Proceedings, 2002, 474

[37]

Nikolaev A, Nikitina I, Zubrilov A, et al. AlN wafers fabricated by hydride vapor phase epitaxy. MRS Internet J N S R, 2000, 5, W6.5

[38]

Melnik Y, Tsvetkov D, Pechnikov A, et al. Characterization of AlN/SiC epitaxial wafers fabricated by hydride vapour phase epitaxy. Phys Status Solidi A, 2001, 188, 463

[39]

Melnik Y, Soukhoveev V, Ivantsov V, et al. AlN substrates: fabrication via vapor phase growth and characterization. Phys Status Solidi A, 2003, 200, 22

[40]

Kovalenkov O, Soukhoveev V, Ivantsov V, et al. Thick AlN layers grown by HVPE. J Cryst Growth, 2005, 281, 87

[41]

Kumagai Y, Yamane T, Koukitu A. Growth of thick AlN layers by hydride vapor-phase epitaxy. J Cryst Growth, 2005, 281, 62

[42]

Liu Y H, Tanabe T, Miyake H, et al. Fabrication of thick AlN film by low pressure hydride vapor phase epitaxy. Phys Status Solidi C, 2006, 3, 1479

[43]

Liu Y H, Tanabe T, Miyake H, et al. Growth of thick AlN layer by hydride vapor phase epitaxy. Jpn J Appl Phys Part 2, 2005, 44, 505

[44]

Sun M S, Zhang J C, Huang J, et al. AlN thin film grown on different substrates by hydride vapor phase epitaxy. J Cryst Growth, 2016, 436, 62

[45]

Gong X J, Xu K, Huang J, et al. Evolution of the surface morphology of AlN epitaxial film by HVPE. J Cryst Growth, 2015, 409, 100

[46]

Eriguchi K I, Murakami H, Panyukova U, et al. MOVPE-like HVPE of AlN using solid aluminum trichloride source. J Cryst Growth, 2007, 298, 332

[47]

Coudurier N, Boichot R, Fellmann V, et al. Effects of the V/III ratio on the quality of aluminum nitride grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Phys Status Solidi C, 2013, 10, 362

[48]

Claudel A, Fellmanna V, Gelard I, et al. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Thin Solid Films, 2014, 573, 140

[49]

Nagashima T, Harada M, Yanagi H, et al. High-speed epitaxial growth of AlN above 1200 °C by hydride vapor phase epitaxy. J Cryst Growth, 2007, 300, 42

[50]

Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor-phase epitaxial-growth of a high-quality gan film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353

[51]

Usui A, Sunakawa H, Sakai A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn J Appl Phys Part 2, 1997, 36, L899

[52]

Ambacher O. Growth and applications of Group III nitrides. J Phys D, 1998, 31, 2653

[53]

Wu X H, Kapolnek D, Tarsa E J, et al. Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN. Appl Phys Lett, 1996, 68, 1371

[54]

Nagashima T, Ma M H, Yanagi H, et al. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy. J Cryst Growth, 2007, 305, 355

[55]

Su X J, Zhang J C, Huang J, et al. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process. J Cryst Growth, 2017, 467, 82

[56]

Akiyama K, Araki T, Murakami H, et al. In situ gravimetric monitoring of decomposition rate on the surface of (0001) c-plane sapphire for the high temperature growth of AlN. Phys Status Solidi C, 2007, 4, 2297

[57]

Zhao D G, Zhu J J, Liu Z S, et al. Surface morphology of AlN buffer layer and its effect on GaN growth by metalorganic chemical vapor deposition. Appl Phys Lett, 2004, 85, 1499

[58]

Tsujisawa K, Kishino S, Liu Y H, et al. High temperature growth of AlN film by LP-HVPE. Phys Status Solidi C, 2007, 4, 2252

[59]

Tajima J, Murakami H, Kumagai Y, et al. Preparation of a crack-free AlN template layer on sapphire substrate by hydride vapor-phase epitaxy at 1450 °C. J Cryst Growth, 2009, 311, 2837

[60]

Tajima J, Kubota Y, Togashi R, et al. Growth of thin protective AlN layers on sapphire substrates at 1065 °C for hydride vapor phase epitaxy of AlN above 1300 °C. Phys Status Solidi C, 2008, 5, 1515

[61]

Balaji M, Claudel A, Fellmann V, et al. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy. J Alloy Compd, 2012, 526, 103

[62]

Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl Phys Express, 2016, 9, 025501

[63]

Huang J, Niu M T, Zhang J C, et al. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer. J Cryst Growth, 2017, 459, 159

[64]

Su X J, Huang J, Zhang J P, et al. Microstructure and influence of buffer layer on threading dislocations in (0001) AlN/sapphire grown by hydride vapor phase epitaxy. J Cryst Growth, 2019, 515, 72

[65]

Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth, 2007, 298, 257

[66]

Katagiri Y, Kishino S, Okuura K, et al. Low-pressure HVPE growth of crack-free thick AlN on a trench-patterned AlN template. J Cryst Growth, 2009, 311, 2831

[67]

Okumura K, Nomura T, Miyake H, et al. HVPE growth of AlN on trench-patterned 6H-SiC substrates. Phys Status Solidi C, 2011, 8, 467

[68]

Lee G S, Lee C, Jeon H, et al. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy. Jpn J Appl Phys, 2016, 55, 05FC02

[69]

Xiao S Y, Suzuki R, Miyake H, et al. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 2018, 502, 41

[70]

Xiao S, Jiang N, Shojiki K, et al. Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy. Jpn J Appl Phys, 2019, 58, SC1003

[71]

Liu X H, Zhang J C, Su X J, et al. Fabrication of crack-free AlN film on sapphire by hydride vapor phase epitaxy using an in situ etching method. Appl Phys Express, 2016, 9

[72]

Prokofyeva T, Seon M, Vanbuskirk J, et al. Vibrational properties of AlN grown on (111)-oriented silicon. Phys Rev B, 2001, 63, 125313

[73]

Huang Z P, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater, 2011, 23, 285

[74]

Akiyama K, Murakami H, Kumaga Y, et al. In situ gravimetric monitoring of decomposition rate on surface of (10(1)over-bar2) r-plane sapphire for high-temperature growth of nonpolar AlN. Jpn J Appl Phys, 2008, 47, 3434

[75]

Kumagai Y, Akiyama K, Togashi R, et al. Polarity dependence of AlN {0001} decomposition in flowing H2. J Cryst Growth, 2007, 305, 366

[76]

Kumagai Y, Enatsu Y, Ishizuki M, et al. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE. J Cryst Growth, 2010, 312, 2530

[77]

Kumagai Y, Tajima J, Ishizuki M, et al. Self-separation of a thick AIN layer from a sapphire substrate via interfacial voids formed by the decomposition of sapphire. Appl Phys Express, 2008, 1, 045003

[78]

Sun M S, Zhang J C, Huang J, et al. Influence of thickness on strain state and surface morphology of AlN grown by HVPE. J Semicond, 2016, 37, 045501

[79]

Kumagai Y, Kubota Y, Nagashima T, et al. Preparation of a freestanding AIN substrate from a thick AIN layer grown by hydride vapor phase epitaxy on a bulk AIN substrate prepared by physical vapor transport. Appl Phys Express, 2012, 5, 055504

[80]

Nomura T, Okumura K, Miyake H, et al. AIN homoepitaxial growth on sublimation-AIN substrate by low-pressure HVPE. J Cryst Growth, 2012, 350, 69

[81]

Nagashima T, Hakomori A, Shimoda T, et al. Preparation of freestanding AlN substrates by hydride vapor phase epitaxy using hybrid seed substrates. J Cryst Growth, 2012, 350, 75

[82]

Watanabe Y, Miyake H, Hiramatsu K, et al. HVPE homoepitaxy on freestanding AlN substrate with trench pattern. Phys Status Solidi C, 2015, 12, 334

[83]

Kumagai Y, Nagashima T, Koukitu A. Preparation of a freestanding AlN substrate by hydride vapor phase epitaxy at 1230 °C using (111) Si as a starting substrate. Jpn J Appl Phys Part 2, 2007, 46, L389

[84]

Freitas J A, Culbertson J C, Mastro M A, et al. Structural and optical properties of thick freestanding AlN films prepared by hydride vapor phase epitaxy. J Cryst Growth, 2012, 350, 33

[85]

Soukhoveev V, Volkova A, Ivantsov V, et al. Large area GaN and AlN template substrates fabricated by HVPE. Phys Status Solidi C, 2009, 6, S333

[1]

Avrutin V, Silversmith D J, Mori Y, et al. Growth of bulk GaN and AlN: progress and challenges. Proc IEEE, 2010, 98, 1302

[2]

Paskova T, Hanser D A, Evans K R. GaN substrates for III-nitride devices. Proc IEEE, 2010, 98, 1324

[3]

Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs — An overview of device operation and applications. Proc IEEE, 2002, 90, 1022

[4]

Adivarahan V, Sun W H, Chitnis A, et al. 250 nm AlGaN light-emitting diodes. Appl Phys Lett, 2004, 85, 2175

[5]

Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 071901

[6]

Jain R, Sun W, Yang J, et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett, 2008, 93, 051113

[7]

Zhang J C, Zhu Y H, Egawa T, et al. Suppression of the subband parasitic peak by 1 nm i-AlN interlayer in AlGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 2008, 93, 131117

[8]

Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 2009, 206, 1176

[9]

Susilo N, Hagedorn S, D, Jaeger D, et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 2018, 112, 041110

[10]

Adivarahan V, Wu S, Sun W H, et al. High-power deep ultraviolet light-emitting diodes based on a micro-pixel design. Appl Phys Lett, 2004, 85, 1838

[11]

Sun W H, Zhang J P, Adivarahan V, et al. AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1.5 mW. Appl Phys Lett, 2004, 85, 531

[12]

Zhang J C, Zhu Y H, Egawa T, et al. Quantum-well and localized state emissions in AlInGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 2007, 91, 221906

[13]

Zhang J C, Sakai Y, Egawa T. Low-temperature electroluminescence quenching of AlGaN deep ultraviolet light-emitting diodes. Appl Phys Lett, 2010, 96, 013503

[14]

Shatalov M, Sun W H, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5, 082101

[15]

Tan S X, Zhang J C, Egawa T, et al. Influence of quantum-well width on the electroluminescence properties of AlGaN deep ultraviolet light-emitting diodes at different temperatures. Nanoscale Res Lett, 2018, 13, 334

[16]

Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Tech, 2011, 26, 014036

[17]

Yano M, Okamoto M, Yap Y K, et al. Growth of nitride crystals, BN, AlN and GaN by using a Na flux. Diam Relat Mater, 2000, 9, 512

[18]

Kangawa Y, Toki R, Yayama T, et al. Novel solution growth method of bulk AlN using Al and Li3N solid sources. Appl Phys Express, 2011, 4, 095501

[19]

Wang B G, Callahan M J. Ammonothermal synthesis of III-nitride crystals. Cryst Growth Des, 2006, 6, 1227

[20]

Slack G A, Mcnelly T F. Growth of high-purity AlN crystals. J Cryst Growth, 1976, 34, 263

[21]

Herro Z G, Zhuang D, Schlesser R, et al. Growth of AlN single crystalline boules. J Cryst Growth, 2010, 312, 2519

[22]

Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 2008, 310, 4020

[23]

Makarov Y N, Avdeev O V, Barash I S, et al. Experimental and theoretical analysis of sublimation growth of AlN bulk crystals. J Cryst Growth, 2008, 310, 881

[24]

Hartmann C, Dittmar A, Wollweber J, et al. Bulk AlN growth by physical vapour transport. Semicond Sci Tech, 2014, 29, 084002

[25]

Bai J, Dudley M, Sun W H, et al. Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification. Appl Phys Lett, 2006, 88, 051903

[26]

Imura M, Fujimoto N, Okada N, et al. Annihilation mechanism of threading dislocations in AlN grown by growth form modification, method using V/III ratio. J Cryst Growth, 2007, 300, 136

[27]

Banal R G, Funato M, Kawakamia Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl Phys Lett, 2008, 92, 241905

[28]

Takeuchi M, Ooishi S, Ohtsuka T, et al. Improvement of AI-polar AIN layer quality by three-stage flow-modulation metalorganic chemical vapor deposition. Appl Phys Express, 2008, 1, 021102

[29]

Zhang L S, Xu F J, Wang J M, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep-Uk, 2016, 6, 35934

[30]

Lee D, Lee J W, Jang J, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl Phys Lett, 2017, 110, 191103

[31]

Long H L, Dai J N, Zhang Y, et al. High quality 10.6 μm AIN grown on pyramidal patterned sapphire substrate by MOCVD. Appl Phys Lett, 2019, 114, 042101

[32]

Freitas J A, Braga G C B, Moore W J, et al. Structural and optical properties of thick freestanding GaN templates. J Cryst Growth, 2001, 231, 322

[33]

Liu L, Edgar J H. Substrates for gallium nitride epitaxy. Mat Sci Eng R, 2002, 37, 61

[34]

Timoshkin A Y, Bettinger H F, Schaefer H F. The chemical vapor deposition of aluminum nitride: Unusual cluster formation in the gas phase. J Am Chem Soc, 1997, 119, 5668

[35]

Kumagai Y, Yamane T, Miyaji T, et al. Hydride vapor phase epitaxy of AlN: thermodynamic analysis of aluminum source and its application to growth. Phys Status Solidi C, 2003, 0, 2498

[36]

Ledyaev O Y, Cherenkov A E, Nikolaev A E, et al. Properties of AlN layers grown on SiC substrates in wide temperature range by HVPE. International Workshop on Nitride Semiconductors, Proceedings, 2002, 474

[37]

Nikolaev A, Nikitina I, Zubrilov A, et al. AlN wafers fabricated by hydride vapor phase epitaxy. MRS Internet J N S R, 2000, 5, W6.5

[38]

Melnik Y, Tsvetkov D, Pechnikov A, et al. Characterization of AlN/SiC epitaxial wafers fabricated by hydride vapour phase epitaxy. Phys Status Solidi A, 2001, 188, 463

[39]

Melnik Y, Soukhoveev V, Ivantsov V, et al. AlN substrates: fabrication via vapor phase growth and characterization. Phys Status Solidi A, 2003, 200, 22

[40]

Kovalenkov O, Soukhoveev V, Ivantsov V, et al. Thick AlN layers grown by HVPE. J Cryst Growth, 2005, 281, 87

[41]

Kumagai Y, Yamane T, Koukitu A. Growth of thick AlN layers by hydride vapor-phase epitaxy. J Cryst Growth, 2005, 281, 62

[42]

Liu Y H, Tanabe T, Miyake H, et al. Fabrication of thick AlN film by low pressure hydride vapor phase epitaxy. Phys Status Solidi C, 2006, 3, 1479

[43]

Liu Y H, Tanabe T, Miyake H, et al. Growth of thick AlN layer by hydride vapor phase epitaxy. Jpn J Appl Phys Part 2, 2005, 44, 505

[44]

Sun M S, Zhang J C, Huang J, et al. AlN thin film grown on different substrates by hydride vapor phase epitaxy. J Cryst Growth, 2016, 436, 62

[45]

Gong X J, Xu K, Huang J, et al. Evolution of the surface morphology of AlN epitaxial film by HVPE. J Cryst Growth, 2015, 409, 100

[46]

Eriguchi K I, Murakami H, Panyukova U, et al. MOVPE-like HVPE of AlN using solid aluminum trichloride source. J Cryst Growth, 2007, 298, 332

[47]

Coudurier N, Boichot R, Fellmann V, et al. Effects of the V/III ratio on the quality of aluminum nitride grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Phys Status Solidi C, 2013, 10, 362

[48]

Claudel A, Fellmanna V, Gelard I, et al. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Thin Solid Films, 2014, 573, 140

[49]

Nagashima T, Harada M, Yanagi H, et al. High-speed epitaxial growth of AlN above 1200 °C by hydride vapor phase epitaxy. J Cryst Growth, 2007, 300, 42

[50]

Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor-phase epitaxial-growth of a high-quality gan film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353

[51]

Usui A, Sunakawa H, Sakai A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn J Appl Phys Part 2, 1997, 36, L899

[52]

Ambacher O. Growth and applications of Group III nitrides. J Phys D, 1998, 31, 2653

[53]

Wu X H, Kapolnek D, Tarsa E J, et al. Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN. Appl Phys Lett, 1996, 68, 1371

[54]

Nagashima T, Ma M H, Yanagi H, et al. Improvement of AlN crystalline quality with high epitaxial growth rates by hydride vapor phase epitaxy. J Cryst Growth, 2007, 305, 355

[55]

Su X J, Zhang J C, Huang J, et al. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process. J Cryst Growth, 2017, 467, 82

[56]

Akiyama K, Araki T, Murakami H, et al. In situ gravimetric monitoring of decomposition rate on the surface of (0001) c-plane sapphire for the high temperature growth of AlN. Phys Status Solidi C, 2007, 4, 2297

[57]

Zhao D G, Zhu J J, Liu Z S, et al. Surface morphology of AlN buffer layer and its effect on GaN growth by metalorganic chemical vapor deposition. Appl Phys Lett, 2004, 85, 1499

[58]

Tsujisawa K, Kishino S, Liu Y H, et al. High temperature growth of AlN film by LP-HVPE. Phys Status Solidi C, 2007, 4, 2252

[59]

Tajima J, Murakami H, Kumagai Y, et al. Preparation of a crack-free AlN template layer on sapphire substrate by hydride vapor-phase epitaxy at 1450 °C. J Cryst Growth, 2009, 311, 2837

[60]

Tajima J, Kubota Y, Togashi R, et al. Growth of thin protective AlN layers on sapphire substrates at 1065 °C for hydride vapor phase epitaxy of AlN above 1300 °C. Phys Status Solidi C, 2008, 5, 1515

[61]

Balaji M, Claudel A, Fellmann V, et al. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy. J Alloy Compd, 2012, 526, 103

[62]

Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl Phys Express, 2016, 9, 025501

[63]

Huang J, Niu M T, Zhang J C, et al. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer. J Cryst Growth, 2017, 459, 159

[64]

Su X J, Huang J, Zhang J P, et al. Microstructure and influence of buffer layer on threading dislocations in (0001) AlN/sapphire grown by hydride vapor phase epitaxy. J Cryst Growth, 2019, 515, 72

[65]

Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth, 2007, 298, 257

[66]

Katagiri Y, Kishino S, Okuura K, et al. Low-pressure HVPE growth of crack-free thick AlN on a trench-patterned AlN template. J Cryst Growth, 2009, 311, 2831

[67]

Okumura K, Nomura T, Miyake H, et al. HVPE growth of AlN on trench-patterned 6H-SiC substrates. Phys Status Solidi C, 2011, 8, 467

[68]

Lee G S, Lee C, Jeon H, et al. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy. Jpn J Appl Phys, 2016, 55, 05FC02

[69]

Xiao S Y, Suzuki R, Miyake H, et al. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 2018, 502, 41

[70]

Xiao S, Jiang N, Shojiki K, et al. Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy. Jpn J Appl Phys, 2019, 58, SC1003

[71]

Liu X H, Zhang J C, Su X J, et al. Fabrication of crack-free AlN film on sapphire by hydride vapor phase epitaxy using an in situ etching method. Appl Phys Express, 2016, 9

[72]

Prokofyeva T, Seon M, Vanbuskirk J, et al. Vibrational properties of AlN grown on (111)-oriented silicon. Phys Rev B, 2001, 63, 125313

[73]

Huang Z P, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater, 2011, 23, 285

[74]

Akiyama K, Murakami H, Kumaga Y, et al. In situ gravimetric monitoring of decomposition rate on surface of (10(1)over-bar2) r-plane sapphire for high-temperature growth of nonpolar AlN. Jpn J Appl Phys, 2008, 47, 3434

[75]

Kumagai Y, Akiyama K, Togashi R, et al. Polarity dependence of AlN {0001} decomposition in flowing H2. J Cryst Growth, 2007, 305, 366

[76]

Kumagai Y, Enatsu Y, Ishizuki M, et al. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE. J Cryst Growth, 2010, 312, 2530

[77]

Kumagai Y, Tajima J, Ishizuki M, et al. Self-separation of a thick AIN layer from a sapphire substrate via interfacial voids formed by the decomposition of sapphire. Appl Phys Express, 2008, 1, 045003

[78]

Sun M S, Zhang J C, Huang J, et al. Influence of thickness on strain state and surface morphology of AlN grown by HVPE. J Semicond, 2016, 37, 045501

[79]

Kumagai Y, Kubota Y, Nagashima T, et al. Preparation of a freestanding AIN substrate from a thick AIN layer grown by hydride vapor phase epitaxy on a bulk AIN substrate prepared by physical vapor transport. Appl Phys Express, 2012, 5, 055504

[80]

Nomura T, Okumura K, Miyake H, et al. AIN homoepitaxial growth on sublimation-AIN substrate by low-pressure HVPE. J Cryst Growth, 2012, 350, 69

[81]

Nagashima T, Hakomori A, Shimoda T, et al. Preparation of freestanding AlN substrates by hydride vapor phase epitaxy using hybrid seed substrates. J Cryst Growth, 2012, 350, 75

[82]

Watanabe Y, Miyake H, Hiramatsu K, et al. HVPE homoepitaxy on freestanding AlN substrate with trench pattern. Phys Status Solidi C, 2015, 12, 334

[83]

Kumagai Y, Nagashima T, Koukitu A. Preparation of a freestanding AlN substrate by hydride vapor phase epitaxy at 1230 °C using (111) Si as a starting substrate. Jpn J Appl Phys Part 2, 2007, 46, L389

[84]

Freitas J A, Culbertson J C, Mastro M A, et al. Structural and optical properties of thick freestanding AlN films prepared by hydride vapor phase epitaxy. J Cryst Growth, 2012, 350, 33

[85]

Soukhoveev V, Volkova A, Ivantsov V, et al. Large area GaN and AlN template substrates fabricated by HVPE. Phys Status Solidi C, 2009, 6, S333

[1]

Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, Xianglin Liu, Lianshan Wang, Zhanguo Wang. Hydride vapor phase epitaxy for gallium nitride substrate. J. Semicond., 2019, 40(10): 101801. doi: 10.1088/1674-4926/40/10/101801

[2]

Yu Guanghui, Lei Benliang, Meng Sheng, Wang Xinzhong, Lin Chaotong, Qi Ming. Hydride Vapor Phase Epitaxy of Thick GaN with Low Temperature AIN Interlayers. J. Semicond., 2007, 28(S1): 238.

[3]

Hu Guang, Zhang Kai, Ye Yun, Wu Wen, Liu Chan, Gu Haoshuang. Film Bulk Acoustic Resonator Based on AlN Piezoelectric Cell. J. Semicond., 2007, 28(S1): 591.

[4]

Zejie Du, Ruifei Duan, Tongbo Wei, Shuo Zhang, Junxi Wang, Xiaoyan Yi, Yiping Zeng, Junxue Ran, Jinmin Li, Boyu Dong. Producing deep UV-LEDs in high-yield MOVPE by improving AlN crystal quality with sputtered AlN nucleation layer. J. Semicond., 2017, 38(11): 113003. doi: 10.1088/1674-4926/38/11/113003

[5]

Yun Lijun, Wei Tongbo, Yan Jianchang, Liu Zhe, Wang Junxi, Li Jinmin. MOCVD epitaxy of InAlN on different templates. J. Semicond., 2011, 32(9): 093001. doi: 10.1088/1674-4926/32/9/093001

[6]

Khushnuma Asghar, D. Das. Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface. J. Semicond., 2016, 37(3): 036001. doi: 10.1088/1674-4926/37/3/036001

[7]

Lin Guoqiang, Zeng Yiping, Duan Ruifei, Wei Tongbo, Ma Ping, Wang Junxi, Liu Zhe, Wang Xiaoliang, Li Jinmin. Selective Area Growth and Characterization of GaN Grown on c-Sapphire by Hydride Vapor Phase Epitaxy. J. Semicond., 2008, 29(3): 530.

[8]

Wang Xinjian, Song Hang, Li Zhiming, Jiang Hong, Li Dabing, Miao Guoqing, Chen Yiren, Sun Xiaojuan. An aluminum nitride photoconductor for X-ray detection. J. Semicond., 2012, 33(10): 103002. doi: 10.1088/1674-4926/33/10/103002

[9]

Yunhong Hou, Meng Zhang, Guowei Han, Chaowei Si, Yongmei Zhao, Jin Ning. A review:aluminum nitride MEMS contour-mode resonator. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001

[10]

Hu Weiguo, Wei Hongyuan, Jiao Chunmei, Kang Tingting, Zhang Riqing, Liu Xianglin. Growth of Free-Standing AlN Nanocrystals on Nanorod ZnO Template. J. Semicond., 2007, 28(10): 1508.

[11]

Liu Ting, Zou Zeya, Wang Zhen, Zhao Hong, Zhao Wenbo, Luo Muchang, Zhou Xun, Yang Xiaobo, Liao Xiuying. Growth of p-GaN on High-Temperature AlN Templates. J. Semicond., 2008, 29(1): 128.

[12]

Shu Zhen, Wan Jing, Lu Bingrui, Xie Shenqi, Chen Yifang, Qu Xinping, Liu Ran. Fast patterning and dry-etch of SiNx for high resolution nanoimprint templates. J. Semicond., 2009, 30(6): 066001. doi: 10.1088/1674-4926/30/6/066001

[13]

Zhang Ruikang, Dong Lei, Yu Yonglin, Wang Dingli, Zhang Jing, Chen Lei, Jiang Shan. Studies on the Butt-Joint of a InGaAsP-Waveguide Realized with Metalorganic Vapor Phase Epitaxy. J. Semicond., 2008, 29(6): 1177.

[14]

He Jinxiao, Duan Yao, Wang Xiaofeng, Cui Junpeng, Zeng Yiping, Li Jinmin. Role of a ZnAl2O4 Buffer Layer in the Metal Vapor Phase Epitaxy of ZnO. J. Semicond., 2008, 29(7): 1334.

[15]

Yin Zhijun, Zhong Fei, Qiu Kai, Li Xinhua, Wang Yuqi. Growth of Thick GaN Films on Mixed-Polarity Buffer by Halide Vapor Phase Epitaxy. J. Semicond., 2007, 28(6): 909.

[16]

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J. Semicond., 2019, 40(1): 011805. doi: 10.1088/1674-4926/40/1/011805

[17]

Jingming Chen, Bin Shu, Jibao Wu, Linxi Fan, Heming Zhang, Huiyong Hu, Rongxi Xuan, Jianjun Song. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode. J. Semicond., 2015, 36(10): 104004. doi: 10.1088/1674-4926/36/10/104004

[18]

Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor. J. Semicond., 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002

[19]

Wang Lai, Hao Zhibiao, Han Yanjun, Luo Yi, Wang Lanxi, Chen Xuekang. Response time improvement of AlGaN photoconductive detectors by adjusting crystal-nuclei coalescence process in metal organic vapor phase epitaxy. J. Semicond., 2011, 32(1): 014013. doi: 10.1088/1674-4926/32/1/014013

[20]

Yi Zhu, Xingyou Chen, Yingjie Ma, Yonggang Zhang, Ben Du, Yanhui Shi, Yi Gu. Surface and optical properties of silicon nitride deposited by inductively coupled plasma-chemical vapor deposition. J. Semicond., 2018, 39(8): 083005. doi: 10.1088/1674-4926/39/8/083005

Search

Advanced Search >>

GET CITATION

M S Sun, J F Li, J C Zhang, W H Sun, The fabrication of AlN by hydride vapor phase epitaxy[J]. J. Semicond., 2019, 40(12): 121803. doi: 10.1088/1674-4926/40/12/121803.

Export: BibTex EndNote

Article Metrics

Article views: 538 Times PDF downloads: 75 Times Cited by: 0 Times

History

Manuscript received: 25 October 2019 Manuscript revised: 24 November 2019 Online: Accepted Manuscript: 26 November 2019 Uncorrected proof: 27 November 2019 Published: 09 December 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图