J. Semicond. > Volume 40?>?Issue 12?> Article Number: 121801

Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials

Nasir Alfaraj a, , Jung-Wook Min a, , Chun Hong Kang , Abdullah A. Alatawi , Davide Priante , Ram Chandra Subedi , Malleswararao Tangi , Tien Khee Ng and Boon S. Ooi ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Progress in the design and fabrication of ultraviolet and deep-ultraviolet group III–nitride optoelectronic devices, based on aluminum gallium nitride and boron nitride and their alloys, and the heterogeneous integration with two-dimensional and oxide-based materials is reviewed. We emphasize wide-bandgap nitride compound semiconductors (i.e., (B, Al, Ga)N) as the deep-ultraviolet materials of interest, and two-dimensional materials, namely graphene, two-dimensional boron nitride, and two-dimensional transition metal dichalcogenides, along with gallium oxide, as the hybrid integrated materials. We examine their crystallographic properties and elaborate on the challenges that hinder the realization of efficient and reliable ultraviolet and deep-ultraviolet devices. In this article we provide an overview of aluminum nitride, sapphire, and gallium oxide as platforms for deep-ultraviolet optoelectronic devices, in which we criticize the status of sapphire as a platform for efficient deep-ultraviolet devices and detail advancements in device growth and fabrication on aluminum nitride and gallium oxide substrates. A critical review of the current status of deep-ultraviolet light emission and detection materials and devices is provided.

Key words: deep-ultravioletultravioletphotonicsoptoelectronicshybrid

Abstract: Progress in the design and fabrication of ultraviolet and deep-ultraviolet group III–nitride optoelectronic devices, based on aluminum gallium nitride and boron nitride and their alloys, and the heterogeneous integration with two-dimensional and oxide-based materials is reviewed. We emphasize wide-bandgap nitride compound semiconductors (i.e., (B, Al, Ga)N) as the deep-ultraviolet materials of interest, and two-dimensional materials, namely graphene, two-dimensional boron nitride, and two-dimensional transition metal dichalcogenides, along with gallium oxide, as the hybrid integrated materials. We examine their crystallographic properties and elaborate on the challenges that hinder the realization of efficient and reliable ultraviolet and deep-ultraviolet devices. In this article we provide an overview of aluminum nitride, sapphire, and gallium oxide as platforms for deep-ultraviolet optoelectronic devices, in which we criticize the status of sapphire as a platform for efficient deep-ultraviolet devices and detail advancements in device growth and fabrication on aluminum nitride and gallium oxide substrates. A critical review of the current status of deep-ultraviolet light emission and detection materials and devices is provided.

Key words: deep-ultravioletultravioletphotonicsoptoelectronicshybrid



References:

[1]

Wang L, Xie R J, Suehiro T, et al. Down-conversion nitride materials for solid state lighting: Recent advances and perspectives. Chem Rev, 2018, 118, 1951

[2]

Alhassan A I, Young N G, Farrell R M, et al. Development of high performance green c-plane III-nitride light-emitting diodes. Opt Express, 2018, 26, 5591

[3]

Pimputkar S, Speck J S, DenBaars S P, et al. Prospects for LED lighting. Nat Photonics, 2009, 3, 180

[4]

Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl Phys Lett, 2004, 85, 3696

[5]

Matafonova G, Batoev V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review. Water Res, 2018, 132, 177

[6]

Chen J, Loeb S, Kim J H. LED revolution: fundamentals and prospects for UV disinfection applications. Environ Sci: Water Res Technol, 2017, 3, 188

[7]

Chen Q, Zhang H, Dai J. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle. IEEE Photonics J, 2018, 10, 6100807

[8]

Hirayama H, Fujikawa S, Kamata N. Recent progress in AlGaN-based deep-UV LEDs. Electron Commun Jpn, 2015, 98, 1

[9]

Aoyagi Y, Takeuchi M, Yoshida K, et al. High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone. J Environ Prot, 2012, 3, 695

[10]

Würtele M, Kolbe T, Lipsz M, et al. Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection. Water Res, 2011, 45, 1481

[11]

Alhamoud A A, Alfaraj N, Priante D, et al. Functional integrity and stable high-temperature operation of planarized ultraviolet-A AlxGa1?xN/AlyGa1?yN multiple-quantum-disk nanowire LEDs with charge-trapping inhibition interlayer. Gallium Nitride Materials and Devices XIV. Vol. 10918, 2019, 109181X

[12]

Jasuja K, Ayinde K, Wilson C L, et al. Introduction of protonated sites on exfoliated, large-area sheets of hexagonal boron nitride. ACS Nano, 2018, 12, 9931

[13]

Pacilé D, Meyer J C, Girit ? ?, et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92, 133107

[14]

Srinivasan S, Stevens M, Ponce F A, et al. Carrier dynamics and electrostatic potential variation in InGaN quantum wells grown on \scriptsize$ \left\{ {11\bar 22} \right\}$ GaN pyramidal planes. Appl Phys Lett, 2006, 89, 231908

[15]

ElAfandy R T, Majid M A, Ng T K, et al. Exfoliation of threading dislocation-free, singlecrystalline, ultrathin gallium nitride nanomembranes. Adv Funct Mater, 2014, 24, 2305

[16]

Hirayama H. Ultraviolet LEDs. In: Nitride Semiconductor Light-Emitting Diodes (LEDs). Elsevier, 2014, 497

[17]

Orji N G, Badaroglu M, Barnes B M, et al. Metrology for the next generation of semiconductor devices. Nat Electron, 2018, 1, 532

[18]

Ayari T, Sundaram S, Li X, et al. Heterogeneous integration of thin-film InGaN-based solar cells on foreign substrates with enhanced performance. ACS Photonics, 2018, 5, 3003

[19]

Liu S, Sheng B, Wang X, et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Appl Phys Lett, 2018, 112, 231904

[20]

Yuan C, Pomeroy J W, Kuball M. Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers. Appl Phys Lett, 2018, 113, 102101

[21]

Jiang J, Guo W, Xu H, et al. Performance enhancement of ultraviolet light emitting diode incorporating Al nanohole arrays. Nanotechnology, 2018, 29, 45LT01

[22]

Ishibe T, Kurokawa T, Naruse N, et al. Resistive switching at the high quality metal/insulator interface in Fe3O4/SiO2/α-FeSi2/Si stacking structure. Appl Phys Lett, 2018, 113, 141601

[23]

Priante D, Janjua B, Prabaswara A, et al. Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer. Opt Mater Express, 2017, 7, 4214

[24]

Sumikura H, Kuramochi E, Notomi M. Nonlinear optical absorption of beryllium isoelectronic centers doped in silicon waveguides. Appl Phys Lett, 2018, 113, 141101

[25]

Priante D, Janjua B, Prabaswara A, et al Ti/TaN bilayer for efficient injection and reliable AlGaN nanowires LEDs. Conference on Lasers and ElectroOptics, 2018, JTu2A.91

[26]

Zhang R, Zhao B, Huang K, et al. Silicon-on-insulator with hybrid orientations for heterogeneous integration of GaN on Si (100) substrate. AIP Adv, 2018, 8, 055323

[27]

Patil S S, Johar M A, Hassan M A, et al. Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation. Appl Catal B, 2018, 237, 791

[28]

Ajima Y, Nakamura Y, Murakami K, et al. Room-temperature bonding of GaAs//Si and GaN//GaAs wafers with low electrical resistance. Appl Phys Express, 2018, 11, 106501

[29]

Liu X, Sun C, Xiong B, et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Appl Phys Lett, 2018, 113, 171106

[30]

Zhao C, Alfaraj N, Subedi R C, et al. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog Quantum Electron, 2018, 61, 1

[31]

Houlton J P, Brubaker M D, Martin D O, et al. An optical Bragg scattering readout for nano-mechanical resonances of GaN nanowire arrays. Appl Phys Lett, 2018, 113, 123102

[32]

Maity A, Grenadier S J, Li J, et al. Hexagonal boron nitride neutron detectors with high detection efficiencies. J Appl Phys, 2018, 123, 044501

[33]

Maity A, Grenadier S J, Li J, et al. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors. Appl Phys Lett, 2017, 111, 033507

[34]

Ahmed K, Dahal R, Weltz A, et al. Solid-state neutron detectors based on thickness scalable hexagonal boron nitride. Appl Phys Lett, 2017, 110, 023503

[35]

Alden D, Troha T, Kirste R, et al. Quasi-phase-matched second harmonic generation of UV light using AlN waveguides. Appl Phys Lett, 2019, 114, 103504

[36]

Bruch A W, Liu X, Guo X, et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl Phys Lett, 2018, 113, 131102

[37]

Du C, Hu W, Wang Z L. Recent progress on piezotronic and piezo-phototronic effects in III-group nitride devices and applications. Adv Eng Mater, 2018, 20, 1700760

[38]

Kim H J, Jung S I, Segovia-Fernandez J, et al. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators. AIP Adv, 2018, 8, 055009

[39]

Cassella C, Chen G, Qian Z, et al. RF passive components based on aluminum nitride crosssectional lamé-mode MEMS resonators. IEEE Trans Electron Devices, 2017, 64, 237

[40]

Wang X, Song J, Zhang F, et al. Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv Mater, 2010, 22, 2155

[41]

Yu R, Wu W, Ding Y, et al. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano, 2013, 7, 6403

[42]

Zhang H, Zhang Q, Lin M, et al. A GaN/InGaN/AlGaN MQW RTD for versatile MVL applications with improved logic stability. J Semicond, 2018, 39, 074004

[43]

Springbett H, Gao K, Jarman J, et al. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl Phys Lett, 2018, 113, 101107

[44]

Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 2016, 16, 4317

[45]

Vuong T, Cassabois G, Valvin P, et al. Phonon-photon mapping in a color center in hexagonal boron nitride. Phys Rev Lett, 2016, 117, 097402

[46]

Elafandy R T, Ebaid M, Min J W, et al. Flexible InGaN nanowire membranes for enhanced solar water splitting. Opt Express, 2018, 26, A640

[47]

Zhang H, Ebaid M, Min J W, et al. Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. J Appl Phys, 2018, 124, 083105

[48]

Kim Y J, Lee G J, Kim S, et al. Efficient light absorption by GaN truncated nanocones for high performance water splitting applications. ACS Appl Mater Interfaces, 2018, 10, 28672

[49]

Ebaid M, Min J W, Zhao C, et al. Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. J Mater Chem A, 2018, 6, 6922

[50]

Ebaid M, Priante D, Liu G, et al. Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods. Nano Energy, 2017, 37, 158

[51]

Sekimoto T, Hashiba H, Shinagawa S, et al. Wireless InGaN-Si/Pt device for photo-electrochemical water splitting. Jpn J Appl Phys, 2016, 55, 088004

[52]

Lin C H, Fu H C, Cheng B, et al. A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. NPJ 2D Mater Appl, 2018, 2, 23

[53]

Tan X, Lv Y J, Zhou X Y, et al. AlGaN/GaN pressure sensor with a Wheatstone bridge structure. AIP Adv, 2018, 8, 085202

[54]

Mehnke F, Guttmann M, Enslin J, et al. Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs. IEEE J Sel Top Quantum Electron, 2017, 23, 29

[55]

Pyo J Y, Jeon J H, Koh Y, et al. AlGaN/GaN high-electronmobility transistor pH sensor with extended gate platform. AIP Adv, 2018, 8, 085106

[56]

Cao H, Ma Z, Sun B, et al. Composite degradation model and corresponding failure mechanism for mid-power GaN-based white LEDs. AIP Adv, 2018, 8, 065108

[57]

Janjua B, Ng T K, Zhao C, et al. True yellow light-emitting diodes as phosphor for tunable color-rendering index laser-based white light. ACS Photonics, 2016, 3, 2089

[58]

Guo W, Banerjee A, Bhattacharya P, et al. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl Phys Lett, 2011, 98, 193102

[59]

Lee C, Shen C, Cozzan C, et al. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt Express, 2017, 25, 17480

[60]

Yu F, Strempel K, Fatahilah M F, et al. Normally off vertical 3-D GaN nanowire MOSFETs with inverted p-GaN channel. IEEE Trans Electron Devices, 2018, 65, 2439

[61]

Yin L, Du G, Liu X. Impact of ambient temperature on the self-heating effects in FinFETs. J Semicond, 2018, 39, 094011

[62]

Alfaraj N, Hussain A M, Torres Sevilla G A, et al. Functional integrity of flexible n-channel metal-oxide-semiconductor fieldeffect transistors on a reversibly bistable platform. Appl Phys Lett, 2015, 107, 174101

[63]

Zhou X, Tan X, Wang Y, et al. Coeffect of trapping behaviors on the performance of GaN-based devices. J Semicond, 2018, 39, 094007

[64]

Zhao J, Xing Y, Fu K, et al. Influence of channel/back-barrier thickness on the breakdown of AlGaN/GaN MISHEMTs. J Semicond, 2018, 39, 094003

[65]

Mallick G, Elder R M. Graphene/hexagonal boron nitride heterostructures: Mechanical properties and fracture behavior from nanoindentation simulations. Appl Phys Lett, 2018, 113, 121902

[66]

Zhang Z, Chen J. Thermal conductivity of nanowires. Chin Phys B, 2018, 27, 035101

[67]

Sztein A, Bowers J E, DenBaars S P, et al. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Appl Phys Lett, 2014, 104, 042106

[68]

Sztein A, Bowers J E, DenBaars S P, et al. Thermoelectric properties of lattice matched InAlN on semi-insulating GaN templates. J Appl Phys, 2012, 112, 083716

[69]

Sztein A, Ohta H, Sonoda J, et al. GaN-based integrated lateral thermoelectric device for micro-power generation. Appl Phys Express, 2009, 2, 111003

[70]

Liu W, Balandin A A. Thermoelectric effects in wurtzite GaN and Al xGa1– xN alloys. J Appl Phys, 2005, 97, 123705

[71]

Mark S. Lundstrom (private communication, 2017)

[72]

Wang D, Chen Z Y, Wang T, et al. Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Appl Phys Lett, 2019, 114, 073503

[73]

Franckié M, Bosco L, Beck M, et al. Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling. Appl Phys Lett, 2018, 112, 021104

[74]

Andrews A M, Zederbauer T, Detz H, et al. THz quantum cascade lasers. In: Molecular Beam Epitaxy. Elsevier, 2018, 597

[75]

Wang F, Lee J, Phillips D J, et al. A high-efficiency regime for gas-phase terahertz lasers. Proc Natl Acad Sci USA, 2018, 115, 6614

[76]

Encomendero J, Yan R, Verma A, et al. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2. Appl Phys Lett, 2018, 112, 103101

[77]

Encomendero J, Faria F A, Islam S M, et al. New tunneling features in polar III-nitride resonant tunneling diodes. Phys Rev X, 2017, 7, 041017

[78]

Alves T E P, Kolodziej C, Burda C, et al. Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater Des, 2018, 146, 125

[79]

Ghoneim M T, Sadraei A, P de Souza, et al. A protocol to characterize pH sensing materials and systems. Small Methods, 2019, 3, 1800265

[80]

Lan W, Yang Z, Zhang Y, et al. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces. Appl Surf Sci, 2018, 433, 821

[81]

Zhang B P, Binh N T, Wakatsuki K, et al. Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect. Appl Phys Lett, 2005, 86, 032105

[82]

Maeda T, Narita T, Kanechika M, et al. Franz-Keldysh effect in GaN p–n junction diode under high reverse bias voltage. Appl Phys Lett, 2018, 112, 252104

[83]

Maeda T, Chi X, Horita M, et al. Phonon-assisted optical absorption due to Franz-Keldysh effect in 4H-SiC p-n junction diode under high reverse bias voltage. Appl Phys Express, 2018, 11, 091302

[84]

Bridoux G, Villafuerte M, Ferreyra J M, et al. Franz-Keldysh effect in epitaxial ZnO thin films. Appl Phys Lett, 2018, 112, 092101

[85]

Tangi M, Min J W, Priante D, et al. Observation of piezotronic and piezophototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. Nano Energy, 2018, 54, 264

[86]

Elahi H, Eugeni M, Gaudenzi P. A review on mechanisms for piezoelectric-based energy harvesters. Energies, 2018, 11, 1850

[87]

Dan M, Hu G, Li L, et al. High performance piezotronic logic nanodevices based on GaN/InN/GaN topological insulator. Nano Energy, 2018, 50, 544

[88]

Zhu R, Yang R. Introduction to the piezotronic effect and sensing applications. In: Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Springer, 2018, 1

[89]

Zhao C, Ebaid M, Zhang H, et al. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale, 2018, 10, 15980

[90]

Liang Y H, Towe E. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl Phys Rev, 2018, 5, 011107

[91]

Amano H, Kito M Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J Appl Phys, 1989, 28, L2112

[92]

Akasaki I, Amano H, Kito M, et al. Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p–n junction LED. J Lumin, 1991, 48, 666

[93]

Nakamura S, Senoh M, S Nagahama, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett, 1998, 72, 211

[94]

Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35, L74

[95]

Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-lightemitting diodes. Appl Phys Lett, 1994, 64, 1687

[96]

Amano H, Kitoh M, Hiramatsu K, et al. Growth and luminescence properties of Mg-doped GaN prepared by MOVPE. J Electrochem Soc, 1990, 137, 1639

[97]

Bilenko Y, Lunev A, Hu X, et al. 10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes. Jpn J Appl Phys, 2004, 44(L98), L98

[98]

Bigio I J, Mourant J R. Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys Med Biol, 1997, 42, 803

[99]

Hirayama H, Maeda N, Fujikawa S, et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2014, 53, 100209

[100]

Kang B S, Wang H T, Ren F, et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J App Phys, 2008, 104, 8

[101]

Cho H K, Külberg A, Ploch N L, et al. Bow reduction of AlInGaN-based deep UV LED wafers using focused laser patterning. IEEE Photonics Technol Lett, 2018, 30, 1792

[102]

Janjua B, Priante D, Prabaswara A, et al. Ultraviolet-A LED based on quantum-disks-in-AlGaN-nanowires–Optimization and device reliability. IEEE Photonics J, 2018, 10, 2200711

[103]

SaifAddin B, Zollner C J, Almogbel A, et al. Developments in AlGaN and UVC LEDs grown on SiC. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXII. Vol. 10554. International Society for Optics and Photonics, 2018, 105541E

[104]

Islam S M, Protasenko V, Bharadwaj S, et al Enhancing wall-plug efficiency for deep-UV light-emitting diodes: From crystal growth to devices. In: Light-Emitting Diodes. Springer, 2019, 337.

[105]

Wang X, Peng W, Yu R, et al. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett, 2017, 17, 3718

[106]

Al Balushi Z Y, Redwing J M. In situ stress measurements during MOCVD growth of thick N-polar InGaN. J Appl Phys, 2017, 122, 085303

[107]

Al Balushi Z Y, Redwing J M. The effect of polarity on MOCVD growth of thick InGaN. Appl Phys Lett, 2017, 110, 022101

[108]

McLaurin M, Mates T E, Wu F, et al. Growth of p-type and n-type m-plane GaN by molecular beam epitaxy. J Appl Phys, 2006, 100, 063707

[109]

Sugahara T, Sato H, Hao M, et al. Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn J Appl Phys, 1998, 37, L398

[110]

Boguslawski P , Bernholc J. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys Rev B, 1997, 56, 9496

[111]

Chen Z, Zhang X, Dou Z, et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv Mater, 2018, 30, 1801608

[112]

Qi Y, Wang Y, Pang Z, et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J Am Chem Soc, 2018, 140, 11935

[113]

Yan P, Tian Q, Yang G, et al. Epitaxial growth and interfacial property of monolayer MoS2 on gallium nitride. RSC Adv, 2018, 8, 33193

[114]

Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 2017, 10, 031002

[115]

Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl Phys Lett, 2003, 83, 878

[116]

Van de Walle C G, Stampfl C, Neugebauer J. Theory of doping and defects in III–V nitrides. J Cryst Growth, 1998, 189/190, 505

[117]

Kolbe T, Knauer A, Chua C, et al. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2010, 97, 171105

[118]

Cantu P, Keller S, Mishra U K, et al. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl Phys Lett, 2003, 82, 3683

[119]

Nam K B, Li J, Nakarmi M L, et al. Achieving highly conductive AlGaN alloys with high Al contents. Appl Phys Lett, 2002, 81, 1038

[120]

Nippert F, Tollabi Mazraehno M, Davies M J, et al. Auger recombination in AlGaN quantum wells for UV light-emitting diodes. Appl Phys Lett, 2018, 113, 071107

[121]

Kioupakis E, Rinke P, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl Phys Lett, 2011, 98, 161107

[122]

Zhang M, Bhattacharya P, Singh J, et al. Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2009, 95, 201108

[123]

Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett, 2007, 91, 141101

[124]

Yun J, Shim J I, Hirayama H. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Appl Phys Express, 2015, 8, 022104

[125]

Dreyer C E, Alkauskas A, Lyons J L, et al. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl Phys Lett, 2016, 108, 141101

[126]

Karpov S Y, Makarov Y N. Dislocation effect on light emission efficiency in gallium nitride. Appl Phys Lett, 2002, 81, 4721

[127]

Nagasawa Y, Hirano A. A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire. Appl Sci, 2018, 8, 1264

[128]

Hakamata J, Kawase Y, Dong L, et al. Growth of high-quality AlN and AlGaN films on sputtered AlN/sapphire templates via high-temperature annealing. Phys Status Solidi B, 2018, 255, 1700506

[129]

Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys, 1992, 31, L139

[130]

Liang F, Yang J, Zhao D G, et al. Resistivity reduction of low temperature grown p-Al0.09Ga0.91N by suppressing the incorporation of carbon impurity. AIP Adv, 2018, 8, 085005

[131]

H?mmerich U, Nyein E E, Lee D, et al. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN. Mater Sci Eng B, 2003, 105, 91

[132]

Chen M T, Lu M P, Wu Y J, et al. Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett, 2010, 10, 4387

[133]

Derluyn J, Boeykens S, Cheng K, et al. Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J Appl Phys, 2005, 98, 054501

[134]

Fujiwara H, Sasaki K. Amplified spontaneous emission from a surface-modified GaN film fabricated under pulsed intense UV laser irradiation. Appl Phys Lett, 2018, 113, 171606

[135]

Ng T K, Yan J. Special section guest editorial: Semiconductor UV photonics. J Nanophotonics, 2018, 12, 043501

[136]

Guo Y, Yan J, Zhang Y, et al. Enhancing the light extraction of AlGaN-based ultraviolet light-emitting diodes in the nanoscale. J Nanophotonics, 2018, 12, 043510

[137]

Alias M S, Tangi M, Holguin-Lerma J A, et al. Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices. J Nanophotonics, 2018, 12, 043508

[138]

Min J W, Priante D, Tangi M, et al. Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. J Nanophotonics, 2018, 12, 043511

[139]

Sun J, Lu C, Song Y, et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem Soc Rev, 2018, 47, 4242

[140]

Jiang H X, Lin J Y. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond Sci Technol, 2014, 29, 084003

[141]

Giovannetti G, Khomyakov P A, Brocks G, et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B, 2007, 76, 073103

[142]

Kang C H, Shen C, Saheed M S M, et al. Carbon nanotubegraphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. Appl Phys Lett, 2016, 109, 081902

[143]

Tangi M, Shakfa M K, Mishra P, et al. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS2. Opt Mater Express, 2017, 7, 3697

[144]

Mak K F, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12, 207

[145]

Tadjer M J, Koehler A D, Freitas J A, et al. High resistivity halide vapor phase homoepitaxial β-Ga2O3 films Co-doped by silicon and nitrogen. Appl Phys Lett, 2018, 113, 192102

[146]

Li W, Zhao X, Zhi Y, et al. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors. Appl Opt, 2018, 57, 538

[147]

Higashiwaki M, Jessen G H. The dawn of gallium oxide microelectronics. Appl Phys Lett, 2018, 112, 060401

[148]

Peelaers H, Varley J B, Speck J S, et al. Structural and electronic properties of Ga2O3–Al2O3 alloys. Appl Phys Lett, 2018, 112, 242101

[149]

Pearton S J, Yang J, Cary I V P H , et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301

[150]

Yang T H, Fu H, Chen H, et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J Semicond, 2019, 40, 012801

[151]

Lu X, Zhou L, Chen L, et al. X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method. ECS J Solid State Sci Technol, 2019, 8, Q3046

[152]

Cheng Z, Hanke M, Galazka Z, et al. Thermal expansion of single-crystalline β-Ga2O3 from RT to 1200 K studied by synchrotron-based high resolution x-ray diffraction. Appl Phys Lett, 2018, 113, 182102

[153]

Katre A, Carrete J, Wang T, et al. Phonon transport unveils the prevalent point defects in GaN. Phys Rev Mater, 2018, 2, 050602

[154]

Imura M, Ota Y, Banal R G, Liao M, et al. Effect of boron incorporation on structural and optical properties of AlN layers grown by metalorganic vapor phase epitaxy. Phys Status Solidi A, 2018, 215(21), 1800282

[155]

Kojima K, Takashima S, Edo M, et al. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate. Appl Phys Express, 2017, 10, 061002

[156]

Kamimura J, Bogdanoff P, Ramsteiner M, et al. p-type doping of GaN nanowires characterized by photoelectrochemical measurements. Nano Lett, 2017, 17, 1529

[157]

Pavesi M, Manfredi M, Salviati G, et al. Optical evidence of an electrothermal degradation of InGaN-based light-emitting diodes during electrical stress. Appl Phys Lett, 2004, 84, 3403

[158]

Reboredo F A, Pantelides S T. Novel defect complexes and their role in the p-type doping of GaN. Phys Rev Lett, 1999, 82, 1887

[159]

Miceli G, Pasquarello A. Self-compensation due to point defects in Mg-doped GaN. Phys Rev B, 2016, 93, 165207

[160]

Dai Q, Zhang X, Wu Z, et al. Effects of Mg-doping on characteristics of semi-polar ( $ 11\bar 22$ ) plane p-AlGaN films. Mater Lett, 2017, 209, 472

[161]

Pampili P, Parbrook P J. Doping of III-nitride materials. Mater Sci Semicond Process, 2017, 62, 180

[162]

Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441, 325

[163]

Taniyasu Y, Kasu M, Kobayashi N. Intentional control of n-type conduction for Si-doped AlN and Al xGa1– xN (0.42 ≤ x < 1). Appl Phys Lett, 2002, 81, 1255

[164]

Nakarmi M L, Kim K H, Zhu K, et al. Transport properties of highly conductive n-type Alrich Al xGa1– xN (x ≥ 0.7). Appl Phys Lett, 2004, 85, 3769

[165]

Collazo R, Mita S, Xie J, et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys Status Solidi C, 2011, 8, 2031

[166]

Mehnke F, Wernicke T, Pingel H, et al. Highly conductive n-Al xGa1– xN layers with aluminum mole fractions above 80%. Appl Phys Lett, 2013, 103, 212109

[167]

Nakarmi M L, Nepal N, Ugolini C, et al. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl Phys Lett, 2006, 89, 152120

[168]

Mireles F, Ulloa S E. Acceptor binding energies in GaN and AlN. Phys Rev B, 1998, 58, 3879

[169]

Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mg-doped p-type Al xGa1– xN. Appl Phys Lett, 2002, 80, 1210

[170]

Sarwar A T M G, May B J, Deitz J I, et al. Tunnel junction enhanced nanowire ultraviolet light emitting diodes. Appl Phys Lett, 2015, 107, 101103

[171]

Kaneko M, Ueta S, Horita M, et al. Deep-ultraviolet light emission from 4H-AlN/4H-GaN short-period superlattice grown on 4H-SiC( $ 11\bar 20$ ). Appl Phys Lett, 2018, 112, 012106

[172]

Liu S, Ye C, Cai X, et al. Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer. Appl Phys A, 2016, 122, 527

[173]

Kozodoy P, Hansen M, DenBaars S P, et al. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl Phys Lett, 1999, 74, 3681

[174]

Sun H, Yin J, Pecora E F, et al. Deep-ultraviolet emitting AlGaN multiple quantum well graded-index separate-confinement heterostructures grown by MBE on SiC substrates. IEEE Photon J, 2017, 9, 2201109

[175]

Sun H, Pecora E F, Woodward J, et al. Effect of indium in Al0.65Ga0.35N/Al0.8Ga0.2N MQWs for the development of deep-UV laser structures in the form of graded-index separate confinement heterostructure (GRINSCH). Phys Status Solidi A, 2016, 213, 1165

[176]

Sun H, Woodward J, Yin J, et al. Development of AlGaN-based graded-index-separate-confinement-heterostructure deep UV emitters by molecular beam epitaxy. J Vac Sci Technol B, 2013, 31, 03C117

[177]

Sun H, Moustakas T D. UV emitters based on an AlGaN p-n junction in the form of graded-index separate confinement heterostructure. Appl Phys Express, 2013, 7, 012104

[178]

Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327, 60

[179]

Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes. Appl Phys Lett, 2017, 110, 071103

[180]

Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041

[181]

Gaddy B E, Bryan Z, Bryan I, et al. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN. Appl Phys Lett, 2014, 104, 202106

[182]

Wu H, Zheng R, Liu W, et al. C and Si codoping method for p-type AlN. J Appl Phys, 2010, 108, 053715

[183]

Tran N H, Le B H, Zhao S, et al. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-widebandgap AlN nanostructures. Appl Phys Lett, 2017, 110, 032102

[184]

Connie A T, Zhao S, Sadaf S M, et al. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy. Appl Phys Lett, 2015, 106, 213105

[185]

Sedhain A, Al Tahtamouni T M, Li J, et al. Beryllium acceptor binding energy in AlN. Appl Phys Lett, 2008, 93, 141104

[186]

Wu R, Shen L, Yang M, et al. Possible efficient p-type doping of AlN using Be: An ab initio study. Appl Phys Lett, 2007, 91, 152110

[187]

Szabó ?, Son N T, Janzén E, et al. Group-II acceptors in wurtzite AlN: A screened hybrid density functional study. Appl Phys Lett, 2010, 96, 192110

[188]

Soltamov V A, Rabchinskii M K, Yavkin B V, et al. Properties of AlN single crystals doped with Beryllium via high temperature diffusion. Appl Phys Lett, 2018, 113, 082104

[189]

Wang Q, Bowen C R, Lewis R, et al. Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting. Nano Energy, 2019, 60, 144

[190]

Puchta R. A brighter beryllium. Nat Chem, 2011, 3, 416

[191]

Park J H, Kim D Y, Schubert E F, et al. Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett, 2018, 3, 655

[192]

Kamiyama S, Iwaya M, Hayashi N, et al. Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. J Cryst Growth, 2001, 223, 83

[193]

Islam S M, Lee K, Verma J, et al. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl Phys Lett, 2017, 110, 041108

[194]

Wang L Y, Song W D, Hu W X, et al. Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer. Chin Phys B, 2019, 28, 018503

[195]

Strak P, Kempisty P, Ptasinska M, et al. Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations. J Appl Phys, 2013, 113, 193706

[196]

Long H, Wang S, Dai J, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD. Opt Express, 2018, 26, 680

[197]

Reich C, Guttmann M, Feneberg M, et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl Phys Lett, 2015, 107, 142101

[198]

Verma J, Islam S M, Protasenko V, et al. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl Phys Lett, 2014, 104, 021105

[199]

Verma J, Kandaswamy P K, Protasenko V, et al. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes. Appl Phys Lett, 2013, 102, 041103

[200]

Taniyasu Y, Kasu M. Polarization property of deepultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl Phys Lett, 2011, 99, 251112

[201]

Zhao S, Mi Z. Al(Ga)N nanowire deep ultraviolet optoelectronics. Semicond Semimet, 2017, 96, 167

[202]

Beeler M, Hille P, Schormann J, et al. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures. Nano Lett, 2014, 14, 1665

[203]

Tchernycheva M, Nevou L, Doyennette L, et al. Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells. Phys Rev B, 2006, 73, 125347

[204]

Cociorva D, Aulbur W G, Wilkins J W. Quasiparticle calculations of band offsets at AlN–GaN interfaces. Solid State Commun, 2002, 124, 63

[205]

Binggeli N, Ferrara P, Baldereschi A. Band-offset trends in nitride heterojunctions. Phys Rev B, 2001, 63, 245306

[206]

Kamiya K, Ebihara Y, Kasu M, . Efficient structure for deep-ultraviolet light-emitting diodes with high emission efficiency: A first-principles study of AlN/GaN superlattice. Jpn J Appl Phys, 2012, 51, 02BJ11

[207]

Bayerl D, Islam S M, Jones C M, et al. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl Phys Lett, 2016, 109, 241102

[208]

Islam S M, Protasenko V, Rouvimov S, et al. Sub-230 nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski-Krastanov mode. Jpn J Appl Phys, 2016, 55, 05FF06

[209]

Bayerl D, Kioupakis E. Visible-wavelength polarized-light emission with small-diameter InN nanowires. Nano Lett, 2014, 14, 3709

[210]

Efros A L, Delehanty J B, Huston A L, et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat Nanotechnol, 2018, 13, 278

[211]

Sharma A S, Dhar S. Dependence of strain distribution on In content in InGaN/GaN quantum wires and spherical quantum dots. J Electron Mater, 2018, 47, 1239

[212]

Renard J, Kandaswamy P K, Monroy E, et al. Suppression of nonradiative processes in long-lived polar GaN/AlN quantum dots. Appl Phys Lett, 2009, 95, 131903

[213]

Janjua B, Sun H, Zhao C, et al. Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale, 2017, 9, 7805

[214]

Zhao C, Ng T K, Wei N, et al. Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Lett, 2016, 16, 1056

[215]

Hestroffer K, Leclere C, Cantelli V, et al. In situ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2012, 100, 212107

[216]

Schumann T, Gotschke T, Limbach F, et al. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology, 2011, 22, 095603

[217]

Ravi L, Boopathi K, Panigrahi P, et al. Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications. Appl Surf Sci, 2018, 449, 213

[218]

Fan S, Zhao S, Chowdhury F A, et al. Molecular beam epitaxial growth of III-nitride nanowire heterostructures and emerging device applications. In: Handbook of GaN Semiconductor Materials and Devices. CRC Press, 2017, 265

[219]

Heilmann M, Munshi A M, Sarau G, et al. Vertically oriented growth of GaN nanorods on Si using graphene as an atomically thin buffer layer. Nano Lett, 2016, 16, 3524

[220]

Zhong Z, Qian F, Wang D, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett, 2003, 3, 343

[221]

Wang R, Nguyen H P T, Connie A T, et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt Express, 2014, 22, A1768

[222]

Parkinson P, Joyce H J, Gao Q, et al. Carrier lifetime and mobility enhancement in nearly defect-free core- shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett, 2009, 9, 3349

[223]

Tham D, Nam C Y, Fischer J E. Defects in GaN nanowires. Adv Funct Mater, 2006, 16, 1197

[224]

Le B H, Zhao S, Liu X, et al. Controlled coalescence of AlGaN nanowire arrays: An architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv Mater, 2016, 28, 8446

[225]

Chang Y L, Wang J, Li F, et al. High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si(111). Appl Phys Lett, 2010, 96, 013106

[226]

Yan R, Gargas D, Yang P. Nanowire photonics. Nat Photonics, 2009, 3, 569

[227]

Qian F, Gradecak S, Li Y, et al. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett, 2005, 5, 2287

[228]

Qian F, Li Y, Gradecak S, et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett, 2004, 4, 1975

[229]

Priante D, Tangi M, Min J W, et al. Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. Opt Mater Express, 2019, 9, 203

[230]

Almutlaq J, Yin J, Mohammed O F, et al. The benefit and challenges of zero-dimensional perovskites. J Phys Chem Lett, 2018, 9, 4131

[231]

Hung N T, Hasdeo E H, Nugraha A R, et al. Quantum effects in the thermoelectric power factor of low-dimensional semiconductors. Phys Rev Lett, 2016, 117, 036602

[232]

Li H, Geelhaar L, Riechert H, et al. Computing equilibrium shapes of wurtzite crystals: The example of GaN. Phys Rev Lett, 2015, 115, 085503

[233]

Schuster F, Winnerl A, Weiszer S, et al. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution. J Appl Phys, 2015, 117, 044307

[234]

Nguyen H P T, Djavid M, Cui K, et al. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 2012, 23, 194012

[235]

Moustakas T D. Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy. MRS Commun, 2016, 6, 247

[236]

Liu K, Sun H, AlQatari F, et al. Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering. Appl Phys Lett, 2017, 111, 222106

[237]

Li X, Wang S, Liu H, et al. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%. Phys Status Solidi B, 2017, 254, 1600699

[238]

Orsal G, Maloufi N, Gautier S, et al. Effect of boron incorporation on growth behavior of BGaN/GaN by MOVPE. J Cryst Growth, 2008, 310, 5058

[239]

Escalanti L, Hart G L W. Boron alloying in GaN. Appl Phys Lett, 2004, 84, 705

[240]

Teles L K, Furthmüller J, Scolfaro L M R, et al. Phase separation and gap bowing in zinc-blende InGaN, InAlN, BGaN, and BAlN alloy layers. Physica E, 2002, 13, 1086

[241]

Teles L K, Scolfaro L M R, Leite J R, et al. Spinodal decomposition in B xGa1– xN and B xAl1– xN alloys. Appl Phys Lett, 2002, 80, 1177

[242]

Edgar J H, Smith D T, Eddy C R Jr, et al. c-Boron-aluminum nitride alloys prepared by ion-beam assisted deposition. Thin Solid Films, 1997, 298, 33

[243]

Jiang H X, Lin J Y. Hexagonal boron nitride epilayers: Growth, optical properties and device applications. ECS J Solid State Sci Technol, 2017, 6, Q3012

[244]

Das T, Chakrabarty S, Kawazoe Y, et al. Tuning the electronic and magnetic properties of graphene/h-BN hetero nanoribbon: A first-principles investigation. AIP Adv, 2018, 8, 065111

[245]

Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science, 2007, 317, 932

[246]

Blase X, Rubio A, Louie S G, et al. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys Rev B, 1995, 51, 6868

[247]

Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron nitride nanotubes. Phys Rev B, 1994, 49, 5081

[248]

Arnaud B, Lebegue S, Rabiller P, et al. Huge excitonic effects in layered hexagonal boron nitride. Phys Rev Lett, 2006, 96, 026402

[249]

Hong X, Wang D, Chung D D L. Boron nitride nanotube mat as a low-k dielectric material with relative dielectric constant ranging from 1.0 to 1.1. J Electron Mater, 2016, 45, 453

[250]

Yin J, Li J, Hang Y, et al. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 2016, 12, 2942

[251]

Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem Soc Rev, 2016, 45, 5541

[252]

Terao T, Zhi C, Bando Y, et al. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C, 2010, 114, 4340

[253]

Zhi C, Bando Y, Tang C, et al. Boron nitride nanotubes. Mater Sci Eng R, 2010, 70, 92

[254]

Henck H, Pierucci D, Fugallo G, et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys Rev B, 2017, 95, 085410

[255]

Grenadier S J, Maity A, Li J, et al. Origin and roles of oxygen impurities in hexagonal boron nitride epilayers. Appl Phys Lett, 2018, 112, 162103

[256]

Du X Z, Li J, Lin J Y, et al. The origins of near band-edge transitions in hexagonal boron nitride epilayers. Appl Phys Lett, 2016, 108, 052106

[257]

Attaccalite C, Bockstedte M, Marini A, et al. Coupling of excitons and defect states in boron-nitride nanostructures. Phys Rev B, 2011, 83, 144115

[258]

Schué L, Sponza L, Plaud A, et al. Bright luminescence from indirect and strongly bound excitons in h-BN. Phys Rev Lett, 2019, 122, 067401

[259]

Watanabe K, Taniguchi T. Jahn-Teller effect on exciton states in hexagonal boron nitride single crystal. Phys Rev B, 2009, 79, 193104

[260]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3, 404

[261]

Solozhenko V L, Lazarenko A G, Petitet J P, et al. Bandgap energy of graphite-like hexagonal boron nitride. J Phys Chem Solids, 2001, 62, 1331

[262]

Carlisle J A, Shirley E L, Terminello L J, et al. Band-structure and core-hole effects in resonant inelastic softx-ray scattering: Experiment and theory. Phys Rev B, 1999, 59, 7433

[263]

Jia J J, Callcott T A, Shirley E L, et al. Resonant inelastic X-ray scattering in hexagonal boron nitride observed by soft-X-ray fluorescence spectroscopy. Phys Rev Lett, 1996, 76, 4054

[264]

Taylor C A, Brown S W, Subramaniam V, et al. Observation of near-band-gap luminescence from boron nitride films. Appl Phys Lett, 1994, 65, 1251

[265]

Lopatin V V, Konusov F V. Energetic states in the boron nitride band gap. J Phys Chem Solids, 1992, 53, 847

[266]

Tarrio C, Schnatterly S E. Interband transitions, plasmons, and dispersion in hexagonal boron nitride. Phys Rev B, 1989, 40, 7852

[267]

Hoffman D M, Doll G L, Eklund P C. Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV. Phys Rev B, 1984, 30, 6051

[268]

Sugino T, Tanioka K, Kawasaki S, et al. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition. Jpn J Appl Phys, 1997, 36, L463

[269]

Carpenter L G, Kirby P J. The electrical resistivity of boron nitride over the temperature range 700 °C to 1400 °C. J Phys D, 1982, 15, 1143

[270]

Davies B M, Bassani F, Brown F C, et al. Core excitons at the boron K edge in hexagonal BN. Phys Rev B, 1981, 24, 3537

[271]

Tegeler E, Kosuch N, Wiech G, et al. On the electronic structure of hexagonal boron nitride. Phys Status Solidi B, 1979, 91, 223

[272]

Zunger A, Katzir A, Halperin A. Optical properties of hexagonal boron nitride. Phys Rev B, 1976, 13, 5560

[273]

Brown F C, Bachrach R Z, Skibowski M. Effect of X-ray polarization at the boron K edge in hexagonal BN. Phys Rev B, 1976, 13, 2633

[274]

Zupan J, Kolar D. Optical properties of graphite and boron nitride. J Phys C Solid State Phys, 1972, 5, 3097

[275]

Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics, 2016, 10, 262

[276]

Laleyan D A, Zhao S, Woo S Y, et al. AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics. Nano Lett, 2017, 17, 3738

[277]

Cadiz F, Courtade E, Robert C, et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys Rev X, 2017, 7, 021026

[278]

Museur L, Brasse G, Pierret A, et al. Exciton optical transitions in a hexagonal boron nitride single crystal. Phys Status Solidi RRL, 2011, 5, 214

[279]

Pierucci D, Zribi J, Henck H, et al. Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: Electronic properties and band structure. Appl Phys Lett, 2018, 112, 253102

[280]

Schubert E F. Light-emitting diodes. Cambridge University Press, 2006

[281]

Kaneko K, Fujita S, Hitora T. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY? technique. Jpn J Appl Phys, 2018, 57, 02CB18

[282]

Fujita S, Oda M, Kaneko K, et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 2016, 55, 1202A3

[283]

Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47, 7311

[284]

Marezio M, Remeika J P. Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2– xFe xO3. J Chem Phys, 1967, 46, 1862

[285]

Leszczynski M, Teisseyre H, Suski T, et al. Lattice parameters of gallium nitride. Appl Phys Lett, 1996, 69, 73

[286]

Zhao J, Zhang X, He J, et al. High internal quantum efficiency of nonpolar a-plane AlGaN-based multiple quantum wells grown on r-plane sapphire substrate. ACS Photonics, 2018, 5, 1903

[287]

Tangi M, Mishra P, Janjua B, et al. Role of quantumconfined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes. J Appl Phys, 2018, 123, 105702

[288]

Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 2017, 80, 106501

[289]

Barto? I, Romanyuk O, Paskova T, et al. Electron band bending and surface sensitivity: X-ray photoelectron spectroscopy of polar GaN surfaces. Surf Sci, 2017, 664, 241

[290]

Jang H W, Lee J H, Lee J L. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition. Appl Phys Lett, 2002, 80, 3955

[291]

Bhat I. Physical properties of gallium nitride and related III–V nitrides. In: Wide Bandgap Semiconductor Power Devices. Woodhead Publishing, 2019, 43

[292]

Yonenaga I, Ohkubo Y, Deura M, et al. Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides. AIP Adv, 2015, 5, 077131

[293]

Yim W M, Paff R J. Thermal expansion of AlN, sapphire, and silicon. J Appl Phys, 1974, 45, 1456

[294]

Maruska H P, Tietjen J J. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett, 1969, 15, 327

[295]

Wright A. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J Appl Phys, 1997, 82, 2833

[296]

Kim K, Lambrecht W R L, Segall B. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys Rev B, 1996, 53, 16310

[297]

Polian A, Grimsditch M, Grzegory I. Elastic constants of gallium nitride. J Appl Phys, 1996, 79, 3343

[298]

Thokala R, Chaudhuri J. Calculated elastic constants of wide band gap semiconductor thin films with a hexagonal crystal structure for stress problems. Thin Solid Films, 1995, 266, 189

[299]

McNeil L E, Grimsditch M, French R H. Vibrational spectroscopy of aluminum nitride. J Am Ceram Soc, 1993, 76, 1132

[300]

Chetverikova I F, Chukichev M V, Rastorguev L N. X-ray phase analysis and elastic properties of gallium nitride. Inorg Mater, 1986, 22, 53

[301]

Rounds R, Sarkar B, Sochacki T, et al. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. J Appl Phys, 2018, 124, 105106

[302]

Ziade E, Yang J, Brummer G, et al. Thickness dependent thermal conductivity of gallium nitride. Appl Phys Lett, 2017, 110, 031903

[303]

Mion C, Muth J F, Preble E A, et al. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Appl Phys Lett, 2006, 89, 092123

[304]

Harafuji K, Tsuchiya T, Kawamura K. Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J Appl Phys, 2004, 96, 2501

[305]

Levinshtein M E, Rumyantsev S L, Shur M S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. John Wiley & Sons, 2001

[306]

Morkoc H, Strite S, Gao G, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys, 1994, 76, 1363

[307]

Berger L I. Semiconductor materials. CRC Press, 1997, 123

[308]

Grzegory I, Krukowski S, Jun J, et al. Stability of indium nitride at N2 pressure up to 20 kbar. AIP Conf Proc, 1994, 309, 565

[309]

Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of AIN. J Phys Chem Solids, 1987, 48, 641

[310]

Barin I, Knacke O, Kubaschewski O. Thermochemical properties of inorganic substances. Springer-Verlag, 1977

[311]

Slack G A, McNelly T F. AlN single crystals. J Cryst Growth, 1977, 42, 560

[312]

Slack G A, McNelly T F. Growth of high purity AlN crystals. J Cryst Growth, 1976, 34, 263

[313]

Slack G A, Bartram S F. Thermal expansion of some diamondlike crystals. J Appl Phys, 1975, 46, 89

[314]

Mezaki R, Tilleux E W, Jambois T F,et al. Specific heat of nonmetallic solids. Plenum Press, 1970

[315]

Tyagai V A, Evstigneev A M, Krasiko A N, et al. Optical properties of indium nitride films. Sov Phys Semicond, 1977, 11, 1257

[316]

Barker A S Jr, Ilegems M. Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B, 1973, 7, 743

[317]

Wagner J M, Bechstedt F. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys Rev B, 2002, 66, 115202

[318]

Krukowski S, Witek A, Adamczyk J, et al. Thermal properties of indium nitride. J Phys Chem Solids, 1998, 59, 289

[319]

Doppalapudi D, Moustakas T D. Epitaxial growth and structure of III–V nitride thin films. In: Handbook of Thin Films. Elsevier, 2002, 57

[320]

You S T, Lo I, Shih H J, et al. Strain of m-plane GaN epitaxial layer grown on β-LiGaO2(100) by plasma-assisted molecular beam epitaxy. AIP Adv, 2018, 8, 075116

[321]

Davies M J, Dawson P, Massabuau F C P, et al. The effects of varying threading dislocation density on the optical properties of InGaN/GaN quantum wells. Phys Status Solidi C, 2014, 11, 750

[322]

Zhang J P, Wang H M, Gaevski M E, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80, 3542

[323]

Dong P, Yan J, Wang J, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett, 2013, 102, 241113

[324]

Bryan Z, Bryan I, Xie J, et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl Phys Lett, 2015, 106, 142107

[325]

Grandusky J R, Smart J A, Mendrick M C, et al. Pseudomorphic growth of thick n-type Al xGa1– xN layers on low-defect-density bulk AlN substrates for UV LED applications. J Cryst Growth, 2009, 311, 2864

[326]

Graham D M, Soltani-Vala A, Dawson P, et al. Optical and microstructural studies of InGaN/GaN single-quantum-well structures. J Appl Phys, 2005, 97, 103508

[327]

Nakamura S, Senoh M, Mukai T. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl Phys Lett, 1993, 62, 2390

[328]

Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p–n diodes on a free-standing GaN substrate. Appl Phys Lett, 2018, 112, 182106

[329]

Ferdous M S, Wang X, Fairchild M N, et al. Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2007, 91, 231107

[330]

Kamiyama S, Iwaya M, Takanami S, et al. UV light-emitting diode fabricated on hetero-ELO-grown Al0.22Ga0.78N with low dislocation density. Phys Status Solidi A, 2002, 192, 296

[331]

Nakamura S. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 1998, 281, 956

[332]

Massabuau F C, Rhode S L, Horton M K, et al. Dislocations in AlGaN: Core structure, atom segregation, and optical properties. Nano Lett, 2017, 17, 4846

[333]

Holec D, Costa P M F J, Kappers M J, et al. Critical thickness calculations for InGaN/GaN. J Cryst Growth, 2007, 303, 314

[334]

Holec D, Zhang Y, Rao D V S, et al. Equilibrium critical thickness for misfit dislocations in III-nitrides. J Appl Phys, 2008, 104, 123514

[335]

Yang X, Nitta S, Nagamatsu K, et al. Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy. J Cryst Growth, 2018, 482, 1

[336]

Creighton J R, Coltrin M E, Figiel J J. Measurement and thermal modeling of sapphire substrate temperature at III–nitride MOVPE conditions. J Cryst Growth, 2017, 464, 132

[337]

Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 2009, 206, 1176

[338]

Weeks T W Jr, Bremser M D, Ailey K S, et al. GaN thin films deposited via organometallic vapor phase epitaxy on α(6H)-SiC(0001) using high-temperature monocrystalline AlN buffer layers. Appl Phys Lett, 1995, 67, 401

[339]

Akasaki I, Amano H, Koide Y, et al. Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1– xAl xN (0 < x ≤ 0.4) films grown on sapphire substrate by MOVPE. J Cryst Growth, 1989, 98, 209

[340]

Matta S, Brault J, Ngo T H, et al. Photoluminescence properties of (Al,Ga)N nanostructures grown on Al0.5Ga0.5N (0001). Superlattices Microstruct, 2018, 114, 161

[341]

Hirayama H, Fujikawa S, Norimatsu J, et al. Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs. Phys Status Solidi C, 2009, 6, S356

[342]

Xu Q, Liu B, Zhang S, et al. Structural and optical properties of AlxGa1–xN (0.33 ≤ x ≤ 0.79) layers on high-temperature AlN interlayer grown by metal organic chemical vapor deposition. Superlattices Microstruct, 2017, 101, 144

[343]

Khan M A, Shatalov M, Maruska H P, et al. III-nitride UV devices. Jpn J Appl Phys, 2005, 44, 7191

[344]

Keller S, DenBaars S P. Metalorganic chemical vapor deposition of group III nitrides — a discussion of critical issues. J Cryst Growth, 2003, 248, 479

[345]

Wu X H, Fini P, Tarsa E J, et al. Dislocation generation in GaN heteroepitaxy. J Cryst Growth, 1998, 189, 231

[346]

Imura M, Nakano K, Fujimoto N, et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys, 2007, 46, 1458

[347]

Narayanan V, Lorenz K, Kim W, et al. Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition. Appl Phys Lett, 2001, 78, 1544

[348]

Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81, 604

[349]

Jiang H, Egawa T, Hao M, et al. Reduction of threading dislocations in AlGaN layers grown on AlN/sapphire templates using high-temperature GaN interlayer. Appl Phys Lett, 2005, 87, 241911

[350]

Tersoff J. Dislocations and strain relief in compositionally graded layers. Appl Phys Lett, 1993, 62, 693

[351]

Ivanov S V, Nechaev D V, Sitnikova A A, et al. Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on c-Al2O3. Semicond Sci Technol, 2014, 29, 084008

[352]

Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev, 2013, 7, 408

[353]

Janjua B, Sun H, Zhao C, et al. Droop-free AlxGa1– xN/AlyGa1– yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. Opt Express, 2017, 25, 1381

[354]

Kim T, Seong T Y, Kwon O. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode. Appl Phys Lett, 2016, 108, 231101

[355]

Jung E, Hwang G, Chung J, et al. Investigating the origin of efficiency droop by profiling the temperature across the multi-quantum well of an operating light-emitting diode. Appl Phys Lett, 2015, 106, 041114

[356]

Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J Appl Phys, 2013, 114, 071101

[357]

Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91, 183507

[358]

Efremov A A, Bochkareva N, Gorbunov R I, et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006, 40, 605

[359]

Yang Y, Cao X A, Yan C. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans Electron Devices, 2008, 55, 1771

[360]

Mukai T, Yamada M, Nakamura S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn J Appl Phys, 1999, 38, 3976

[361]

Meng X, Wang L, Hao Z, et al. Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis. Appl Phys Lett, 2016, 108, 013501

[362]

Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett, 2008, 93, 041102

[363]

Meyaard D S, Lin G B, Cho J, et al. Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop. Appl Phys Lett, 2013, 102, 251114

[364]

Bochkareva N I, Rebane Y T, Shreter Y G. Efficiency droop in GaN LEDs at high current densities: Tunneling leakage currents and incomplete lateral carrier localization in InGaN/GaN quantum wells. Semiconductors, 2014, 48, 1079

[365]

Rozhansky I V, Zakheim D A. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density. Semiconductors, 2006, 40, 839

[366]

Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solidi A, 2010, 207, 2217

[367]

Hai X, Rashid R T, Sadaf S M, et al. Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes. Appl Phys Lett, 2019, 114, 101104

[368]

Frost T, Jahangir S, Stark E, et al. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett, 2014, 14, 4535

[369]

Iveland J, Martinelli L, Peretti J, et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys Rev Lett, 2013, 110, 177406

[370]

Wang L, Jin J, Mi C, et al. A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes. Materials, 2017, 10, 1233

[371]

Yoshida H, Kuwabara M, Yamashita Y, et al. Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2010, 96, 211122

[372]

Morko? H. Handbook of nitride semiconductors and devices, materials properties, physics and growth. Vol. 3. John Wiley & Sons, 2009

[373]

Hader J, Moloney J V, Pasenow B, et al. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl Phys Lett, 2008, 92, 261103

[374]

Delaney K T, Rinke P, Van de Walle C G. Auger recombination rates in nitrides from first principles. Appl Phys Lett, 2009, 94, 191109

[375]

Delaney K T, Rinke P, Van de Walle C G. Erratum: " Auger recombination rates in nitrides from first principles” [Appl. Phys. Lett. 94, 191109(2009)]. Appl Phys Lett, 2016, 108, 259901

[376]

Guo W, Zhang M, Bhattacharya P, et al. Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics. Nano Lett, 2011, 11, 1434

[377]

Liu L, Wang L, Liu N, et al. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes. J Appl Phys, 2012, 112, 083101

[378]

Berdahl P. Radiant refrigeration by semiconductor diodes. J Appl Phys, 1985, 58, 1369

[379]

David A, Hurni C A, Young N G, et al. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl Phys Lett, 2016, 109, 083501

[380]

Kibria M G, Qiao R, Yang W, et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv Mater, 2016, 28, 8388

[381]

Yong Y, Jiang H, Li X, et al. The cluster-assembled nanowires based on M12N12(M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection. Phys Chem Chem Phys, 2016, 18, 21431

[382]

Alfaraj N, Muhammed M M, Li K H, et al. Thermodynamic photoinduced disorder in AlGaN nanowires. AIP Adv, 2017, 7, 125113

[383]

Alfaraj N, Mitra S, Wu F, et al. Photoinduced entropy of InGaN/GaN p–i–n double-heterostructure nanowires. Appl Phys Lett, 2017, 110, 161110

[384]

Wang J B, Johnson S, Ding D, et al. Influence of photon recycling on semiconductor luminescence refrigeration. J Appl Phys, 2006, 100, 043502

[385]

Dawson P, Schulz S, Oliver R A, et al. The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells. J Appl Phys, 2016, 119, 181505

[386]

Badcock T J, Dawson P, Davies M J, et al. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells. J Appl Phys, 2014, 115, 113505

[387]

Li C K, Piccardo M, Lu L S, et al. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Phys Rev B, 2017, 95, 144206

[388]

Belloeil M, Gayral B, Daudin B. Quantum dot-like behavior of compositional fluctuations in AlGaN nanowires. Nano Lett, 2016, 16, 960

[389]

Zhao S, Woo S Y, Bugnet M, Liu X., et al Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: A viable route to electrically injected deep ultraviolet lasers. Nano Lett, 2015, 15, 7801

[390]

Mahajan S. Phase separation and atomic ordering in mixed III nitride layers. Scr Mater, 2014, 75, 1

[391]

Li D, Jiang K, Sun X, et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43

[392]

He J, Wang S, Chen J, et al. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer. Nanotechnology, 2018, 29, 195203

[393]

Yoshikawa A, Nagatomi T, Morishita T, et al. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy. Appl Phys Lett, 2017, 111, 162102

[394]

Jiang K, Sun X, Ben J, et al. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. Cryst Eng Comm, 2018, 20, 2720

[395]

Miyoshi M, Ohta M, Mori T, et al. A comparative study of InGaN/GaN multiple-quantum-well solar sells grown on sapphire and AlN template by metalorganic chemical vapor deposition. Phys Status Solidi A, 2018, 215, 1700323

[396]

Yoshida S, Misawa S, Gonda S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl Phys Lett, 1983, 42, 427

[397]

Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353

[398]

Nakamura S, Senoh M, Mukai T. P-GaN/N-InGaN/NGaN double-heterostructure blue-light-emitting diodes. Jpn J Appl Phys, 1993, 32, L8

[399]

Asif Khan M, Kuznia J N, Olson D T, et al. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl Phys Lett, 1994, 65, 1121

[400]

Zhao S, Woo S Y, Sadaf S M, et al. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics. APL Mater, 2016, 4, 086115

[401]

Himwas C, Den Hertog M, Dang L S, et al. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission. Appl Phys Lett, 2014, 105, 241908

[402]

Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2008, 2, 77

[403]

Risti? J, Sánchez-García M, Calleja E, et al. AlGaN nanocolumns grown by molecular beam epitaxy: Optical and structural characterization. Phys Status Solidi A, 2002, 192, 60

[404]

Vuong T Q P, Cassabois G, Valvin P, et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater, 2017, 4, 021023

[405]

Liu X, Zhao S, Le B H, et al. Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes. Appl Phys Lett, 2017, 111, 101103

[406]

SaifAddin B K, Almogbel A, Zollner C, et al. Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC. Semicond Sci Technol, 2019, 43, 035007

[407]

Alias M S, Janjua B, Zhao C, et al. Enhancing the light-extraction efficiency of AlGaN nanowires ultraviolet light-emitting diode by using nitride/air distributed Bragg reflector nanogratings. IEEE Photonics J, 2017, 9, 4900508

[408]

Park J S, Kim J K, Cho J, et al. Review- Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency. ECS J Solid State Sci Technol, 2017, 6, Q42

[409]

Kneissl M, Rass J. III-nitride ultraviolet emitters. In: Springer Series in Materials Science. Vol. 227. Springer, 2016

[410]

Yamada K, Furusawa Y, Nagai S, et al. Development of underfilling and encapsulation for deep-ultraviolet LEDs. Appl Phys Express, 2015, 8, 012101

[411]

Maeda N, Hirayama H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys Status Solidi C, 2013, 10, 1521

[412]

Kim B J, Jung H, Shin J, et al. Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays. Thin Solid Films, 2009, 517, 2742

[413]

Jo M, Maeda N, Hirayama H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent pAlGaN layer. Appl Phys Express, 2016, 9, 012102

[414]

Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN. Appl Phys Lett, 2013, 102, 012105

[415]

Kozodoy P, Xing H, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87, 1832

[416]

Chen Y, Wu H, Han E, et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl Phys Lett, 2015, 106, 162102

[417]

Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl Phys Lett, 2011, 99, 112110

[418]

Kauser M Z, Osinsky A, Dabiran A M, et al. Enhanced vertical transport in p-type AlGaN/GaN superlattices. Appl Phys Lett, 2004, 85, 5275

[419]

Luo W, Liu B, Li Z, et al. Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy. Appl Phys Lett, 2018, 113, 072107

[420]

Detchprohm T, Liu Y S, Mehta K, et al. Sub 250 nm deep-UV AlGaN/AlN distributed Bragg reflectors. Appl Phys Lett, 2017, 110, 011105

[421]

Alias M S, Alatawi A A, Chong W K, et al. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime. IEEE Photonics J, 2018, 10, 2200508

[422]

Majety S, Li J, Cao X K, et al. Epitaxial growth and demonstration of hexagonal BN/AlGaN p–n junctions for deep ultraviolet photonics. Appl Phys Lett, 2012, 100, 061121

[423]

Dahal R, Li J, Majety S, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl Phys Lett, 2011, 98, 211110

[424]

He B, Zhang W J, Yao Z Q, et al. p-type conduction in beryllium-implanted hexagonal boron nitride films. Appl Phys Lett, 2009, 95, 252106

[425]

Nose K, Oba H, Yoshida T. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc. Appl Phys Lett, 2006, 89, 112124

[426]

Lu M, Bousetta A, Bensaoula A, et al. Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition. Appl Phys Lett, 1996, 68, 622

[427]

Nakarmi M L, Kim K H, Khizar M, et al. Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl Phys Lett, 2005, 86, 092108

[428]

Yan Q, Janotti A, Scheffler M, et al. Origins of optical absorption and emission lines in AlN. Appl Phys Lett, 2014, 105, 111104

[429]

Takeuchi M, Ooishi S, Ohtsuka T, et al. Improvement of Al-polar AlN layer quality by three-stage flow-modulation metalorganic chemical vapor deposition. Appl Phys Express, 2008, 1, 021102

[430]

Takeuchi M, Shimizu H, Kajitani R, et al. Al- and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD. J Cryst Growth, 2007, 305, 360

[431]

Kikkawa J, Nakamura Y, Fujinoki N, et al. Investigating the origin of intense photoluminescence in Si capping layer on Ge1– xSnx nanodots by transmission electron microscopy. J Appl Phys, 2013, 113, 074302

[432]

Huang C Y, Wu P Y, Chang K S, et al. High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultraviolet light-emitting diodes. AIP Adv, 2017, 7, 055110

[433]

Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl Phys Express, 2016, 9, 025501

[434]

Miyake H, Lin C H, Tokoro K, et al. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J Cryst Growth, 2016, 456, 155

[435]

Iriarte G F. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering. J Vac Sci Technol, 2010, 28, 193

[436]

Ide K, Matsubara Y, Iwaya M, et al. Microstructure analysis of AlGaN on AlN underlying layers with different threading dislocation densities. Jpn J Appl Phys, 2013, 52, 08JE22

[437]

Nonaka K, Asai T, Ban K, et al. Microstructural analysis of thick AlGaN epilayers using Mg-doped AlN underlying layer. Phys Status Solidi C, 2011, 8, 1467

[438]

Asai T, Nonaka K, Ban K, et al. Growth of low-dislocation-density AlGaN using Mg-doped AlN underlying layer. Phys Status Solidi C, 2010, 7, 2101

[439]

Sun H, Wu F, Al Tahtamouni T M, et al. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate. J Phys D, 2017, 50, 395101

[440]

Hussey L, White R M, Kirste R, et al. Sapphire decomposition and inversion domains in N-polar aluminum nitride. Appl Phys Lett, 2014, 104, 032104

[441]

Wong M H, Wu F, Speck J S, et al. Polarity inversion of N-face GaN using an aluminum oxide interlayer. J Appl Phys, 2010, 108, 123710

[442]

Lim D H, Xu K, Arima S, et al. Polarity inversion of GaN films by trimethyl-aluminum preflow in low-pressure metalorganic vapor phase epitaxy growth. J Appl Phys, 2002, 91, 6461

[443]

Eom D, Kim J, Lee K, et al. Fabrication of AlN nano-structures using polarity control by high temperature metalorganic chemical vapor deposition. J Nanosci Nanotechnol, 2015, 15, 5144

[444]

Liu X, Sun C, Xiong B, et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Opt Express, 2017, 25, 587

[445]

Lee D, Lee J W, Jang J, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nanopatterned AlN/sapphire substrates. Appl Phys Lett, 2017, 110, 191103

[446]

Zhou S, Hu H, Liu X, et al. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer. Jpn J Appl Phys, 2017, 56, 111001

[447]

Wang S, Dai J, Hu J, et al. Ultrahigh degree of optical polarization above 80% in AlGaN-based deep-ultraviolet LED with moth-eye microstructure. ACS Photonics, 2018, 5, 3534

[448]

Shen X Q, Takahashi T, Ide T, et al. High quality thin AlN epilayers grown on Si(110) substrates by metalorganic chemical vapor deposition. CrystEngComm, 2017, 19, 1204

[449]

Tran B T, Maeda N, Jo M, et al. Performance improvement of AlN crystal quality grown on patterned Si(111) substrate for deep UV-LED applications. Sci Rep, 2016, 6, 35681

[450]

Ooi Y K, Zhang J. Light extraction efficiency analysis of flip-chip ultraviolet light-emitting diodes with patterned sapphire substrate. IEEE Photonics J, 2018, 10, 8200913

[451]

Bhattacharyya A, Moustakas T D, Zhou L, et al. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl Phys Lett, 2009, 94, 181907

[452]

Susilo N, Enslin J, Sulmoni L, et al. Effect of the GaN:Mg contact layer on the light-output and current-voltage characteristic of UVB LEDs. Phys Status Solidi A, 2018, 215, 1700643

[453]

Akaike R, Ichikawa S, Funato M, et al. Al xGa1– xN-based semipolar deep ultraviolet light-emitting diodes. Appl Phys Express, 2018, 11, 061001

[454]

Liu X, Mashooq K, Szkopek T, et al. Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal. IEEE Photonics J, 2018, 10, 4501211

[455]

Liu D, Cho S J, Park J, et al. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection. Appl Phys Lett, 2018, 112, 081101

[456]

Liu C, Ooi Y K, Islam S M, et al. 234 nm and 246 nm AlN-delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl Phys Lett, 2018, 112, 011101

[457]

Inoue S i, Tamari N, Taniguchi M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl Phys Lett, 2017, 110, 141106

[458]

Sarwar A T M G, May B J, et al. Effect of quantum well shape and width on deep ultraviolet emission in AlGaN nanowire LEDs. Phys Status Solidi A, 2016, 213, 947

[459]

Kent T F, Carnevale S D, Sarwar A, et al. Deep ultraviolet emitting polarization induced nanowire light emitting diodes with Al xGa1– xN active regions. Nanotechnology, 2014, 25, 455201

[460]

Moustakas T D, Liao Y, Kao C K, et al. Deep UV-LEDs with high IQE based on AlGaN alloys with strong band structure potential fluctuations. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVI. Vol. 8278. 2012, 82780L

[461]

Liao Y, Thomidis C, Kao C K. et al AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Appl Phys Lett, 2011, 98, 081110

[462]

Cabalu J S, Bhattacharyya A, Thomidis C, et al. High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy. J Appl Phys, 2006, 100, 104506

[463]

Molnar R J, Lei T, Moustakas T D. Electron transport mechanism in gallium nitride. Appl Phys Lett, 1993, 62, 72

[464]

Mu?oz E, Monroy E, Calle F, et al. AlGaN photodiodes for monitoring solar UV radiation. J Geophys Res Atmos, 2000, 105, 4865

[465]

Monroy E, Calle F, Pau J, et al. AlGaN-based UV photodetectors. J Cryst Growth, 2001, 230, 537

[466]

Chowdhury U, Wong M M, Collins C J, et al . High-performance solar-blind photodetector using an Al0.6Ga0.4N n-type window layer. J Cryst Growth, 2003, 248, 552

[467]

Asgari A, Ahmadi E, Kalafi M. Al xGa1– xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures. Microelectron J, 2009, 40, 104

[468]

Larason T, Ohno Y. Calibration and characterization of UV sensors for water disinfection. Metrologia, 2006, 43, S151

[469]

Oubei H M, Shen C, Kammoun A, et al. Light based underwater wireless communications. Jpn J Appl Phys, 2018, 57, 08PA06

[470]

Werner M R, Fahrner W R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans Ind Electron, 2001, 48, 249

[471]

Neuberger R, Müller G, Ambacher O, et al. High-electron-mobility AlGaN/GaN Transistors (HEMTs) for fluid monitoring applications. Phys Status Solidi A, 2001, 185, 85

[472]

Miller R A, So H, Chiamori H C, et al. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays. Rev Sci Instrum, 2016, 87, 095003

[473]

Alheadary W G, Park K H, Alfaraj N, et al. Free-space optical channel characterization and experimental validation in a coastal environment. Opt Express, 2018, 26, 6614

[474]

de Graaf G, Wolffenbuttel R F. Illumination source identification using a CMOS optical microsystem. IEEE Trans Instrum Meas, 2004, 53, 238

[475]

Ji M H, Kim J, Detchprohm T, et al. p–i–p–i–n separate absorption and multiplication ultraviolet avalanche photodiodes. IEEE Photonics Technol Lett, 2018, 30, 181

[476]

Zheng J, Wang L, Wu X, et al. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl Phys Lett, 2016, 109, 241105

[477]

Li J, Fan Z Y, Dahal R, et al. 200 nm deep ultraviolet photodetectors based on AlN. Appl Phys Lett, 2006, 89, 213510

[478]

Khan M A, Kuznia J N, Olson D T, et al. High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl Phys Lett, 1992, 60, 2917

[479]

Tut T, Biyikli N, Kimukin I, et al. High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current. SolidState Electron, 2005, 49, 117

[480]

Biyikli N, Kimukin I, Kartaloglu T, et al. High-speed solar-blind AlGaN-based metal-semiconductor- metal photodetectors. Phys Status Solidi C, 2003, 0, 2314

[481]

Biyikli N, Aytur O, Kimukin I, et al. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl Phys Lett, 2002, 81, 3272

[482]

Pandit B, Cho J. Metal-semiconductor-metal ultraviolet photodiodes based on reduced graphene oxide/GaN Schottky contacts. Thin Solid Films, 2018, 660, 824

[483]

Brendel M, Brunner F, Weyers M. On the EQE-bias characteristics of bottom-illuminated AlGaN-based metal–semiconductor–metal photodetectors with asymmetric electrode geometry. J Appl Phys, 2017, 122, 174501

[484]

Brendel M, Helbling M, Knauer A, et al. Top- and bottom-illumination of solar-blind AlGaN metal-semiconductor-metal photodetectors. Phys Status Solidi A, 2015, 212, 1021

[485]

Brendel M, Helbling M, Knigge A, et al. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal–semiconductor–metal photodetectors with high external quantum efficiencies. J Appl Phys, 2015, 118, 244504

[486]

Butun S, Tut T, Butun B, et al. Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength. Appl Phys Lett, 2006, 88, 123503

[487]

Narita T, Wakejima A, Egawa T. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn J Appl Phys, 2013, 52, 01AG06

[488]

Tut T, Yelboga T, Ulker E, et al. Solar-blind AlGaN-based p–i–n photodetectors with high breakdown voltage and detectivity. Appl Phys Lett, 2008, 92, 103502

[489]

Teke A, Dogan S, He L, et al. p-GaN-i-GaN/AlGaN multiple-quantum well n-AlGaN back-illuminated ultraviolet detectors. J Electron Mater, 2003, 32, 307

[490]

Collins C J, Chowdhury U, Wong M M, et al. Improved solar-blind detectivity using an Al xGa1– xN heterojunction p–i–n photodiode. Appl Phys Lett, 2002, 80, 3754

[491]

Wong M M, Chowdhury U, Collins C J, et al. High quantum efficiency AlGaN/GaN solar-blind photodetectors grown by metalorganic chemical vapor deposition. Phys Status Solidi A, 2001, 188, 333

[492]

Biyikli N, Kimukin I, Kartaloglu T, et al. High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts. Appl Phys Lett, 2003, 82, 2344

[493]

Averin S V, Kuznetzov P I, Zhitov V A, et al. Solar-blind MSM-photodetectors based on Al xGa1– xN heterostructures. Opt Quant Electron, 2007, 39, 181

[494]

Wang G, Xie F, Lu H, et al. Performance comparison of front-and back-illuminated AlGaN-based metal–semiconductor–metal solar-blind ultraviolet photodetectors. J Vac Sci Technol B, 2013, 31, 011202

[495]

H?iaas I M, Liudi Mulyo A, Vullum P E, et al. GaN/AlGaN nanocolumn ultraviolet LED using double-layer graphene as substrate and transparent electrode. Nano Lett, 2019, 19, 1649

[496]

Fernández-Garrido S, Ramsteiner M, Gao G, et al. Molecular beam epitaxy of GaN nanowires on epitaxial graphene. Nano Lett, 2017, 17, 5213

[497]

Tonkikh A A, Tsebro V I, Obraztsova E A, et al. Films of filled singlewall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range. Nanoscale, 2019, 11, 6755

[498]

Boulanger N, Barbero D R. Nanostructured networks of single wall carbon nanotubes for highly transparent, conductive, and anti-reflective flexible electrodes. Appl Phys Lett, 2013, 103, 021116

[499]

Borges B G A L, Holakoei S, das Neves M F F, et al. Molecular orientation and femtosecond charge transfer dynamics in transparent and conductive electrodes based on graphene oxide and PEDOT:PSS composites. Phys Chem Chem Phys, 2019, 21, 736

[500]

Yan X, Ma J, Xu H, et al. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. J Phys D, 2016, 49, 325103

[501]

Brendel M, Knigge A, Brunner F, et al. Anisotropic responsivity of AlGaN metal-semiconductor-metal photodetectors on epitaxial laterally overgrown AlN/sapphire templates. J Electron Mater, 2014, 43, 833

[502]

Schlegel J, Brendel M, Martens M, et al. Influence of carrier lifetime, transit time, and operation voltages on the photoresponse of visible-blind AlGaN metal–semiconductor–metal photodetectors. Jpn J Appl Phys, 2013, 52, 08JF01

[503]

Rathkanthiwar S, Kalra A, Muralidharan R, et al. Analysis of screw dislocation mediated dark current in Al0.50Ga0.50N solar-blind metal-semiconductor-metal photodetectors. J Cryst Growth, 2018, 498, 35

[504]

Liu H Y, Wang Y H, Hsu W C. Suppression of dark current on AlGaN/GaN metal-semiconductor-metal photodetectors. IEEE Sens J, 2015, 15, 5202

[505]

Li D, Sun X, Song H, et al. Influence of threading dislocations on GaN-based metal–semiconductor–metal ultraviolet photodetectors. Appl Phys Lett, 2011, 98, 011108

[506]

Walde S, Brendel M, Zeimer U, et al. Impact of open-core threading dislocations on the performance of AlGaN metal-semiconductor-metal photodetectors. J Appl Phys, 2018, 123, 161551

[507]

Yoshikawa A, Ushida S, Nagase K, et al. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl Phys Lett, 2017, 111, 191103

[508]

Kang S, Nandi R, Kim H, et al. Synthesis of n-AlGaN nanoflowers by MOCVD for high-performance ultraviolet-C photodetectors. J Mater Chem C, 2018, 6, 1176

[509]

Cicek E, McClintock R, Vashaei Z, et al. Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl Phys Lett, 2013, 102, 051102

[510]

Cicek E, Vashaei Z, Huang E Kw, et al. Al xGa1– xN-based deep-ultraviolet 320 × 256 focal plane array. Opt Lett, 2012, 37, 896

[511]

Cicek E, McClintock R, Cho C Y, et al. AlxGa1–xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Appl Phys Lett, 2013, 103, 191108

[512]

Adivarahan V, Simin G, Tamulaitis G, et al. Indium-silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett, 2001, 79, 1903

[513]

Han W Y, Zhang Z W, Li Z M, et al. High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. J Mater Sci Mater Electron, 2018, 29, 9077

[514]

Chen Y, Zhang Z, Jiang H, et al. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J Mater Chem C, 2018, 6, 4936

[515]

Albrecht B, Kopta S, John O, et al. Improved AlGaN p–i–n photodetectors for monitoring of ultraviolet radiation. IEEE J Sel Top Quantum Electron, 2014, 20, 3802507

[516]

Ozbay E, Biyikli N, Kimukin I, et al. High-performance solar-blind photodetectors based on AlxGa1– xN heterostructures. IEEE J Sel Top Quantum Electron, 2004, 10, 742

[517]

Muhtadi S, Hwang S M, Coleman A L, et al. High-speed solar-blind UV photodetectors using high-Al content Al0.64Ga0.36N/ Al0.34Ga0.66N multiple quantum wells. Appl Phys Express, 2017, 10, 011004

[518]

Babichev A V, Zhang H, Lavenus P, et al. GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl Phys Lett, 2013, 103, 201103

[519]

Kang S, Chatterjee U, Um D Y, et al. Ultraviolet-C photodetector fabricated using Si-doped n-AlGaN nanorods grown by MOCVD. ACS Photonics, 2017, 4, 2595

[520]

Zou Y, Zhang Y, Hu Y, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors, 2018, 18, 2072

[521]

Cai Q, Luo W K, Li Q, et al. AlGaN ultraviolet avalanche photodiodes based on a triple-mesa structure. Appl Phys Lett, 2018, 113, 123503

[522]

Shao Z G, Chen D J, Lu H, et al. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett, 2014, 35, 372

[523]

Bellotti E, Bertazzi F, Shishehchi S, et al. Theory of carriers transport in III-nitride materials: State of the art and future outlook. IEEE Trans Electron Devices, 2013, 60, 3204

[524]

Huang Z, Li J, Zhang W, et al. AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl Phys Express, 2013, 6, 054101

[525]

Huang Y, Chen D J, Lu H, et al. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl Phys Lett, 2012, 101, 253516

[526]

Sun L, Chen J, Li J, et al. AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl Phys Lett, 2010, 97, 191103

[527]

Dahal R, Al Tahtamouni T M, Lin J Y,et al. AlN avalanche photodetectors. Appl Phys Lett, 2007, 91, 243503

[528]

Dahal R, Al Tahtamouni T M, Fan Z Y, et al. Hybrid AlN-SiC deep ultraviolet Schottky barrier photodetectors. Appl Phys Lett, 2007, 90, 263505

[529]

McClintock R, Yasan A, Minder K, et al. Avalanche multiplication in AlGaN based solar-blind photodetectors. Appl Phys Lett, 2005, 87, 241123

[530]

Nikzad S, Hoenk M, Jewell A, et al. Single photon counting UV solar-blind detectors using silicon and III–nitride materials. Sensors, 2016, 16, 927

[531]

Pau J L, McClintock R, Minder K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 2007, 91, 041104

[532]

Kim J, Ji M H, Detchprohm T, et al. Comparison of AlGaN p–i–n ultraviolet avalanche photodiodes grown on free-standing GaN and sapphire substrates. Appl Phys Express, 2015, 8, 122202

[533]

Wu H, Wu W, Zhang H, et al. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl Phys Express, 2016, 9, 052103

[534]

Hahn L, Fuchs F, Kirste L, et al. Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range. Appl Phys Lett, 2018, 112, 151102

[535]

Shao Z, Chen D, Liu Y, et al. Significant performance improvement in AlGaN solar-blind avalanche photodiodes by exploiting the built-in polarization electric field. IEEE J Sel Top Quantum Electron, 2014, 20, 3803306

[536]

Walker D, Kumar V, Mi K, et al. Solar-blind AlGaN photodiodes with very low cutoff wavelength. Appl Phys Lett, 2000, 76, 403

[537]

G?kkavas M, Butun S, Tut T, et al. AlGaN-based high-performance metal-semiconductor-metal photodetectors. Photonics Nanostruct: Fundam Appl, 2007, 5, 53

[538]

Izyumskaya N, Demchenko D O, Das S, et al. Recent development of boron nitride towards electronic applications. Adv Electron Mater, 2017, 3, 1600485

[539]

Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol, 2003, 18, R33

[540]

Munoz E, Monroy E, Pau J, et al. III nitrides and UV detection. J Phys Condens Matter, 2001, 13, 7115

[541]

Rodak L, Sampath A, Gallinat C, et al. Solar-blind AlxGa1– xN/ AlN/SiC photodiodes with a polarization-induced electron filter. Appl Phys Lett, 2013, 103, 071110

[542]

Spies M, Den Hertog M I, Hille P, et al. Bias-controlled spectral response in GaN/AlN single-nanowire ultraviolet photodetectors. Nano Lett, 2017, 17, 4231

[543]

Nikishin S, Borisov B, Pandikunta M, et al. High quality AlN for deep UV photodetectors. Appl Phys Lett, 2009, 95, 054101

[544]

Barkad H A, Soltani A, Mattalah M, et al. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes. J Phys D, 2010, 43, 465104

[545]

Laksana C P, Chen M R, Liang Y, et al. Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58, 1688

[546]

Soltani A, Barkad H, Mattalah M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors. Appl Phys Lett, 2008, 92, 053501

[547]

Li J, Majety S, Dahal R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl Phys Lett, 2012, 101, 171112

[548]

Yang N, Zeng X, Lu J, et al. Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl Phys Lett, 2018, 113, 171904

[549]

Sajjad M, Jadwisienczak W M, Feng P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale, 2014, 6, 4577

[550]

Liu H, Meng J, Zhang X, et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 2018, 10, 5559

[551]

Alfaraj N, Li K H, Kang C H, et al. Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition. Conference on Lasers and Electro–Optics, 2019

[552]

Tian H, Liu Q, Hu A, et al. Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt Express, 2018, 26, 5408

[553]

Tian H, Liu Q, Zhou C, et al. Hybrid graphene/unintentionally doped GaN ultraviolet photodetector with high responsivity and speed. Appl Phys Lett, 2018, 113, 121109

[554]

Seo T H, Lee K J, Park A H, et al. Enhanced light output power of near UV light emitting diodes with graphene/indium tin oxide nanodot nodes for transparent and current spreading electrode. Opt Express, 2011, 19, 23111

[555]

Li K H, Alfaraj N, Kang C H, et al. Deep-ultraviolet β-Ga2O3 photodetectors grown on MgO substrates with a TiN template. 2019 IEEE Photonics Conference (IPC), San Antonio, TX, United States, 2019

[556]

Qian L X, Liu H Y, Zhang H F, et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency. Appl Phys Lett, 2019, 114, 113506

[557]

Xu Y, An Z, Zhang L, et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Express, 2018, 8, 2941

[558]

Rathkanthiwar S, Kalra A, Solanke S V, et al. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J Appl Phys, 2017, 121, 164502

[559]

Zhuo R, Zeng L, Yuan H, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res, 2019, 12, 183

[560]

Zhuo R, Wang Y, Wu D, et al. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. J Mater Chem C, 2018, 6, 299

[561]

He T, Zhao Y, Zhang X, et al. Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction. Nanophotonics, 2018, 7, 1557

[562]

Lin R, Zheng W, Zhang D, et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl Mater Interfaces, 2018, 10, 22419

[563]

Lu Y, Wu Z, Xu W, et al. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity. Nanotechnology, 2016, 27, 48LT03

[564]

Ai M, Guo D, Qu Y, et al. Fast-response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure. J Alloys Compd, 2017, 692, 634

[565]

Kumar M, Jeong H, Polat K, et al. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector. J Phys D , 2016, 49, 275105

[566]

Martens M, Mehnke F, Kuhn C, et al. Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates. IEEE Photonics Technol Lett, 2014, 26, 342

[567]

Xie J, Mita S, Bryan Z, et al. Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures. Appl Phys Lett, 2013, 102, 171102

[568]

Wunderer T, Chua C, Northrup J, et al. Optically pumped UV lasers grown on bulk AlN substrates. Phys Status Solidi C, 2012, 9, 822

[569]

Jmerik V N, Mizerov A M, Shubina T V, et al. Optically pumped lasing at 300.4 nm in AlGaN MQW structures grown by plasmaassisted molecular beam epitaxy on c-Al2O3. Phys Status Solidi A, 2010, 207, 1313

[570]

Takano T, Narita Y, Horiuchi A, et al. Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Appl Phys Lett, 2004, 84, 3567

[571]

Martens M, Kuhn C, Simoneit T, et al. The effects of magnesium doping on the modal loss in AlGaN-based deep UV lasers. Appl Phys Lett, 2017, 110, 081103

[572]

Pecora E F, Sun H, Dal Negro L, et al. Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Opt Mater Express, 2015, 5, 809

[573]

Zhu H, Shan C X, Li B H, et al. Low-threshold electrically pumped ultraviolet laser diode. J Mater Chem, 2011, 21, 2848

[574]

Yoshida H, Yamashita Y, Kuwabara M, et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat Photonics, 2008, 2, 551

[575]

Sellés J, Brimont C, Cassabois G, et al. Deep-UV nitride-on-silicon microdisk lasers. Sci Rep, 2016, 6, 21650

[576]

Zhao S, Mi Z. AlGaN nanowires: Path to electrically injected semiconductor deep ultraviolet lasers. IEEE J Quantum Electron, 2018, 54, 2001009

[577]

Zhao S, Liu X, Wu Y, et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature. Appl Phys Lett, 2016, 109, 191106

[578]

Zhao S, Liu X, Woo S, et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl Phys Lett, 2015, 107, 043101

[579]

Pan R, Retzer U, Werblinski T, et al. Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system. Opt Lett, 2018, 43, 1191

[580]

Higase Y, Morita S, Fujii T, et al. High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide. Opt Lett, 2018, 43, 1714

[581]

Yamamoto H, Oyamada T, Sasabe H, et al. Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl Phys Lett, 2004, 84, 1401

[582]

Tsutsumi N, Kawahira T, Sakai W. Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Appl Phys Lett, 2003, 83, 2533

[583]

Kogelnik H, Shank C V. Stimulated emission in a periodic structure. Appl Phys Lett, 1971, 18, 152

[584]

Lochner Z, Kao T T, Liu Y S, et al. Deep-ultraviolet lasing at 243 nm from photo-pumped AlGaN/AlN heterostructure on AlN substrate. Appl Phys Lett, 2013, 102, 101110

[585]

Kao T T, Liu Y S, Satter M M, et al. Sub-250 nm low-threshold deep-ultraviolet AlGaN-based heterostructure laser employing HfO2/SiO2 dielectric mirrors. Appl Phys Lett, 2013, 103, 211103

[586]

Shatalov M, Gaevski M, Adivarahan V, et al. Room-temperature stimulated emission from AlN at 214 nm. J Appl Phys, 2006, 45, L1286

[587]

Klein T, Klembt S, Kozlovsky V, et al. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors. J Appl Phys, 2015, 117, 113106

[588]

Oto T, Banal R G, Kataoka K, et al. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat Photonics, 2010, 4, 767

[589]

Demir I, Li H, Robin Y, et al. Sandwich method to grow high quality AlN by MOCVD. J Phys D, 2018, 51, 085104

[590]

Tran B T, Hirayama H, Jo M, et al. High-quality AlN template grown on a patterned Si(111) substrate. J Cryst Growth, 2017, 468, 225

[591]

Kataoka K, Funato M, Kawakami Y. Development of polychromatic ultraviolet light-emitting diodes based on three-dimensional AlGaN quantum wells. Appl Phys Express, 2017, 10, 121001

[592]

Kataoka K, Funato M, Kawakami Y. Deep-ultraviolet polychromatic emission from three-dimensionally structured AlGaN quantum wells. Appl Phys Express, 2017, 10, 031001

[593]

Funato M, Hayashi K, Ueda M, et al. Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells. Appl Phys Lett, 2008, 93, 021126

[594]

Kaneda M, Pernot C, Nagasawa Y, et al. Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn J Appl Phys, 2017, 56, 061002

[595]

Pernot C, Fukahori S, Inazu T, et al. Development of high efficiency 255–355 nm AlGaN-based light-emitting diodes. Phys Status Solidi A, 2011, 208, 1594

[596]

Pernot C, Kim M, Fukahori S, et al. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl Phys Express, 2010, 3, 061004

[597]

Nagamatsu K, Okada N, Sugimura H, et al. High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. J Cryst Growth, 2008, 310, 2326

[598]

Harada T, Oda Y, Motohisa J, et al. Novel nanofaceting structures grown on patterned vicinal (110) GaAs substrates by metal-organic vapor phase epitaxy (MOVPE). Jpn J Appl Phys, 2000, 39, 7090

[599]

Oda Y, Fukui T. Natural formation of multiatomic steps on patterned vicinal substrates by MOVPE and application to GaAs QWR structures. J Cryst Growth, 1998, 195, 6

[600]

Susilo N, Hagedorn S, Jaeger D, et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 2018, 112, 041110

[601]

He C, Zhao W, Wu H, et al. High-quality AlN film grown on sputtered AlN/sapphire via growth-mode modification. Cryst Growth Des, 2018, 18, 6816

[602]

Xiao S, Suzuki R, Miyake H, et al. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 2018, 502, 41

[603]

Zhao L, Yang K, Ai Y, et al. Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing. J Mater Sci Mater Electron, 2018, 29, 13766

[604]

Ben J, Sun X, Jia Y, et al. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. Cryst Eng Comm, 2018, 20, 4623

[605]

Zhao L, Zhang S, Zhang Y, et al. AlGaN-based ultraviolet light-emitting diodes on sputter-deposited AlN templates with epitaxial AlN/AlGaN superlattices. Superlattices Microstruct, 2018, 113, 713

[606]

Oh J T, Moon Y T, Kang D S, et al. High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer. Opt Express, 2018, 26, 5111

[607]

He C, Zhao W, Zhang K, et al. High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates. ACS Appl Mater Interfaces, 2017, 9, 43386

[608]

Chen Z, Zhang J, Xu S, et al. Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AlN nucleation layer. Mater Res Bull, 2017, 89, 193

[609]

Chen Z, Zhang J, Xu S, et al. Effect of AlN interlayer on the impurity incorporation of GaN film grown on sputtered AlN. J Alloys Compd, 2017, 710, 756

[610]

Zhang L, Xu F, Wang M, et al. High-quality AlN epitaxy on sapphire substrates with sputtered buffer layers. Superlattices Microstruct, 2017, 105, 34

[611]

Yoshizawa R, Miyake H, Hiramatsu K. Effect of thermal annealing on AlN films grown on sputtered AlN templates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2017, 57, 01AD05

[612]

Funato M, Shibaoka M, Kawakami Y. Heteroepitaxy mechanisms of AlN on nitridated c-and a-plane sapphire substrates. J Appl Phys, 2017, 121, 085304

[613]

Okada N, Kato N, Sato S, et al. Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification. J Cryst Growth, 2007, 298, 349

[614]

Chang H, Chen Z, Li W, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 2019, 114, 091107

[615]

Zhang L, Li X, Shao Y, Yu J, et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS Appl Mater Interfaces, 2015, 7, 4504

[616]

Kim J, Bayram C, Park H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat Commun, 2014, 5, 4836

[617]

Han N, Cuong T V, Han M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun, 2013, 4, 1452

[618]

Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952, 74, 719

[619]

Han S H, Mauze A, Ahmadi E, et al. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 2018, 33, 045001

[620]

Sasaki K, Kuramata A, Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5, 035502

[621]

Shimamura K, Víllora E G, Domen K, et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2005, 44, L7

[622]

Víllora E G, Shimamura K, Aoki K, et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 2006, 500, 209

[623]

Ohira S, Suzuki N, Minami H, et al. Growth of hexagonal GaN films on the nitridated β-Ga2O3 substrates using RF-MBE. Phys Status Solidi C, 2007, 4, 2306

[624]

Kachel K, Korytov M, Gogova D, et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. Cryst Eng Comm, 2012, 14, 8536

[625]

Ito S, Takeda K, Nagata K, et al. Growth of GaN and AlGaN on (100) β-Ga2O3 substrates. Phys Status Solidi C, 2012, 9, 519

[626]

Ajia I A, Yamashita Y, Lorenz K, et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 2018, 113, 082102

[627]

Yamada K, Nagasawa Y, Nagai S, et al. Study on the main-chain structure of amorphous fluorine resins for encapsulating AlGaN-based DUV-LEDs. Phys Status Solidi A, 2018, 215, 1700525

[628]

Nagai S, Yamada K, Hirano A, et al. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study. Jpn J Appl Phys, 2016, 55, 082101

[629]

Liang R, Dai J, Xu L, et al. Interface anchored effect on improving working stability of deep ultraviolet light-emitting diode using graphene oxide-based fluoropolymer encapsulant. ACS Appl Mater Interfaces, 2018, 10, 8238

[630]

Shen K C, Ku C T, Hsieh C, et al. Deep-ultraviolet hyperbolic metacavity laser. Adv Mater, 2018, 30, 1706918

[631]

Shen K C, Hsieh C, Cheng Y J, et al. Giant enhancement of emission efficiency and light directivity by using hyperbolic metacavity on deep-ultraviolet AlGaN emitter. Nano Energy, 2018, 45, 353

[632]

Tangi M, Mishra P, Tseng C C, et al. Band alignment at GaN/single-layer WSe2 interface. ACS Appl Mater Interfaces, 2017, 9, 9110

[633]

Mishra P, Tangi M, Ng T K, et al. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Appl Phys Lett, 2017, 110, 012101

[634]

Zhao C, Ng T K, Tseng C C, et al. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv, 2017, 7, 26665

[635]

Tangi M, Mishra P, Li M Y, et al. Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Appl Phys Lett, 2017, 111, 092104

[636]

Tangi M, Mishra P, Ng T K, et al. Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl Phys Lett, 2016, 109, 032104

[637]

Gupta P, Rahman A, Subramanian S, et al. Layered transition metal dichalcogenides: Promising near-lattice-matched substrates for GaN growth. Sci Rep, 2016, 6, 23708

[638]

Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8, 497

[639]

Yin Z, Li H, Li H, Jiang L, et al. Single-layer MoS2 phototransistors. ACS Nano, 2011, 6, 74

[640]

Saigal N, Wielert I, ?apeta D, et al. Effect of lithium doping on the optical properties of monolayer MoS2. Appl Phys Lett, 2018, 112, 121902

[641]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10, 1271

[642]

Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105, 136805

[643]

Bharathi N D, Sivasankaran K. Research progress and challenges of two dimensional MoS2 field effect transistors. J Semicond, 2018, 39, 104002

[644]

Pak Y, Kim Y, Lim N, et al. Scalable integration of periodically aligned 2D-MoS2 nanoribbon array. APL Mater, 2018, 6, 076102

[645]

Huang C Y, Chang C, Lu G Z, et al. Hybrid 2D/3D MoS2/GaN heterostructures for dual functional photoresponse. Appl Phys Lett, 2018, 112, 233106

[646]

Grisafe B, Zhao R, Ghosh R K, et al. Electrically triggered insulator-to-metal phase transition in two-dimensional (2D) heterostructures. Appl Phys Lett, 2018, 113, 142101

[647]

Ahmad M, Varandani D, Mehta B R. Large surface charge accumulation in 2D MoS2/Sb2Te3 junction and its effect on junction properties: KPFM based study. Appl Phys Lett, 2018, 113, 141603

[648]

Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotech, 2013, 8, 826

[649]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7, 699

[650]

Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910

[651]

Zhao C, Ng T K, ElAfandy R T, et al. Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Lett, 2016, 16, 4616

[652]

Li L, Zhang Y, Xu S, et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes. Materials, 2017, 10, 1221

[653]

Tangi M, Kuyyalil J, Shivaprasad S M. Optical bandgap and near surface band bending in degenerate InN films grown by molecular beam epitaxy. J Appl Phys, 2013, 114, 153501

[654]

Kuyyalil J, Tangi M, Shivaprasad S. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN. J Appl Phys, 2012, 112, 083521

[655]

Roul B, Kumar M, Rajpalke M K, et al. Binary group III-nitride based heterostructures: band offsets and transport properties. J Phys D, 2015, 48, 423001

[656]

Zubair A, Nourbakhsh A, Hong J Y, et al. Hot electron transistor with van der Waals base-collector heterojunction and highperformance GaN emitter. Nano Lett, 2017, 17, 3089

[657]

Liu J, Kobayashi A, Toyoda S, et al. Band offsets of polar and nonpolar GaN/ZnO heterostructures determined by synchrotron radiation photoemission spectroscopy. Phys Status Solidi B, 2011, 248, 956

[658]

King P D C, Veal T D, Kendrick C E, et al. InN/GaN valence band offset: High-resolution X-ray photoemission spectroscopy measurements. Phys Rev B, 2008, 78, 033308

[659]

King P D C, Veal T D, Jefferson P H, et al. Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy. Appl Phys Lett, 2007, 90, 132105

[660]

Martin G, Botchkarev A, Rockett A, et al. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by X-ray photoemission spectroscopy. Appl Phys Lett, 1996, 68, 2541

[661]

Mietze C, Landmann M, Rauls E, et al. Band offsets in cubic GaN/AlN superlattices. Phys Rev B, 2011, 83, 195301

[662]

Sang L, Zhu Q S, Yang S Y, et al. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy. Nanoscale Res Lett, 2014, 9, 470

[663]

Zhao G, Li H, Wang L, et al. Measurement of semi-polar (11-22) plane AlN/GaN heterojunction band offsets by X-ray photoelectron spectroscopy. Appl Phys A, 2018, 124, 130

[664]

Mahmood Z H, Shah A P, Kadir A, et al. Determination of InN- GaN heterostructure band offsets from internal photoemission measurements. Appl Phys Lett, 2007, 91, 152108

[665]

Wu C L, Lee H M, Kuo C T, et al. Polarization-induced valence-band alignments at cation- and anion-polar InN/GaN heterojunctions. Appl Phys Lett, 2007, 91, 042112

[666]

Shih C F, Chen N C, Chang P H, et al. Band offsets of InN/GaN interface. Jpn J Appl Phys, 2005, 44, 7892

[667]

Wang K, Lian C, Su N, et al. Conduction band offset at the InN/GaN heterojunction. Appl Phys Lett, 2007, 91, 232117

[668]

Shibin K T C, Gupta G. Band alignment and Schottky behaviour of InN/GaN heterostructure grown by low-temperature low-energy nitrogen ion bombardment. RSC Adv, 2014, 4, 27308

[669]

Akazawa M, Gao B, Hashizume T, et al. Measurement of valence-band offsets of InAlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. J Appl Phys, 2011, 109, 013703

[670]

Jiao W, Kong W, Li J, et al. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition. AIP Adv, 2016, 6, 035211

[671]

Ekpunobi A J, Animalu A O E. Band offsets and properties of AlGaAs/GaAs and AlGaN/GaN material systems. Superlattices Microstruct, 2002, 31, 247

[672]

Sun H, Park Y J, Li K H, et al. Nearly-zero valence band and large conduction band offset at BAlN/GaN heterointerface for optical and power device application. Appl Surf Sci, 2018, 458, 949

[673]

Sun H, Park Y J, Li K H, et al. Band alignment of B0.14Al0.86N/ Al0.7Ga0.3N heterojunction. Appl Phys Lett, 2017, 111, 122106

[674]

Fares C, Tadjer M J, Woodward J, et al. Valence and conduction band offsets for InN and III-nitride ternary alloys on (?201) bulk β-Ga2O3. ECS J Solid State Sci Technol, 2019, 8, Q3154

[675]

Carey IV P H, Ren F, Hays D C, et al. Band offsets in ITO/Ga2O3 heterostructures. Appl Surf Sci, 2017, 422, 179

[676]

Fares C, Ren F, Lambers E, et al. Valence and conduction band offsets for sputtered AZO and ITO on (010) (Al0.14Ga0.86)2O3. Semicond Sci Technol, 2019, 34, 025006

[677]

Fares C, Ren F, Lambers E, et al. Valence- and conduction-band offsets for atomiclayer-deposited Al2O3 on (010) (Al0.14Ga0.86)2O3. J Electron Mater, 2019, 48, 1568

[678]

Liu J M, Liu X L, Xu X Q, et al. Measurement of w-InN/h-BN heterojunction band offsets by X-ray photoemission spectroscopy. Nanoscale Res Lett, 2010, 5, 1340

[679]

Zhang Z H, Zhang Y, Bi W, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Phys Status Solidi A, 2016, 213, 3078

[680]

Karpov S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt Quantum Electron, 2015, 47, 1293

[681]

Bayerl M W, Brandt M S, Graf T, et al. g values of effective mass donors in Al xGa1– xN alloys. Phys Rev B, 2001, 63, 165204

[682]

McGill S A, Cao K, Fowler W B, et al. Bound-polaron model of effective-mass binding energies in GaN. Phys Rev B, 1998, 57, 8951

[683]

Im J S, Moritz A, Steuber F, et al. Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl Phys Lett, 1997, 70, 631

[684]

Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl Phys Express, 2010, 3, 031002

[685]

Hirayama H. Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes. J Appl Phys, 2005, 97, 091101

[686]

Müβener, Teubert J, Hille P, et al. Probing the internal electric field in GaN/AlGaN nanowire heterostructures. Nano Lett, 2014, 14, 5118

[687]

Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys Rev Lett, 1984, 53, 2173

[688]

Carnevale S D, Kent T F, Phillips P J, et al. Polarization-induced pn diodes in wide-bandgap nanowires with ultraviolet electroluminescence. Nano Lett, 2012, 12, 915

[689]

Jena D, Heikman S, Green D, et al. Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys. Appl Phys Lett, 2002, 81, 4395

[690]

Green D S, Haus E, Wu F, et al. Polarity control during molecular beam epitaxy growth of Mg-doped GaN. J Vac Sci Technol B, 2003, 21, 1804

[691]

Kuo Y K, Shih Y H, Tsai M C, et al. Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier. IEEE Photonics Technol Lett, 2011, 23, 1630

[692]

Tangi M, Mishra P, Janjua B, et al. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1– xN nanowires grown by plasma assisted molecular beam epitaxy. J Appl Phys, 2016, 120, 045701

[693]

Choi S, Wu F, Shivaraman R, et al. Observation of columnar microstructure in lattice-matched InAlN/GaN grown by plasma assisted molecular beam epitaxy. Appl Phys Lett, 2012, 100, 232102

[694]

Zhang Z H, Tan S T, Ju Z, et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes. J Disp Technol, 2013, 9, 226

[695]

Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2010, 26, 014036

[696]

Shatalov M, Sun W, Jain R, et al. High power AlGaN ultraviolet light emitters. Semicond Sci Technol, 2014, 29, 084007

[697]

Katsuragawa M, Sota S, Komori M, et al. Thermal ionization energy of Si and Mg in AlGaN. J Cryst Growth, 1998, 189, 528

[698]

Li L, Miyachi Y, Miyoshi M, et al. Enhanced emission efficiency of deep ultraviolet light-emitting AlGaN multiple quantum wells grown on an n-AlGaN underlying layer. IEEE Photonics J, 2016, 8, 1601710

[699]

Zhang Z H, Zhang Y, Bi W, et al. A charge inverter for III-nitride light-emitting diodes. Appl Phys Lett, 2016, 108, 133502

[700]

Ho J K, Jong C S, Chiu C C, et al. Low-resistance ohmic contacts to p-type GaN. Appl Phys Lett, 1999, 74, 1275

[701]

Chae S W, Kim K C, Kim D H, et al. Highly transparent and low-resistant ZnNi/indium tin oxide Ohmic contact on p-type GaN. Appl Phys Lett, 2007, 90, 181101

[702]

Jang H W, Lee J L. Transparent Ohmic contacts of oxidized Ru and Ir on p-type GaN. J Appl Phys, 2003, 93, 5416

[703]

Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping. Appl Phys Lett, 1996, 69, 3737

[704]

Neugebauer S, Hoffmann M, Witte H, et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications. Appl Phys Lett, 2017, 110, 102104

[705]

Zhang Y, Krishnamoorthy S, Akyol F, et al. Reflective metal/semiconductor tunnel junctions for hole injection in AlGaN UV LEDs. Appl Phys Lett, 2017, 111, 051104

[706]

Krishnamoorthy S, Akyol F, Rajan S. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes. Appl Phys Lett, 2014, 105, 141104

[707]

Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes. IEEE J Quantum Electron, 2016, 52, 3300105

[708]

Cheng B, Choi S, Northrup J E, et al. Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl Phys Lett, 2013, 102, 231106

[709]

Kim J K, Waldron E L, Li Y L, et al. P-type conductivity in bulk Al xGa1– xN and Al xGa1– xN/Al yGa1– yN superlattices with average Al mole fraction > 20%. Appl Phys Lett, 2004, 84, 3310

[710]

Zhu T G, Denyszyn J C, Chowdhury U, et al. AlGaN-GaN UV light-emitting diodes grown on SiC by metal-organic chemical vapor deposition. IEEE J Sel Top Quantum Electron, 2002, 8, 298

[711]

Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett, 2010, 97, 062103

[712]

Zhang Z H, Li L, Zhang Y, et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt Express, 2017, 25, 16550

[713]

Jeon S R, Song Y H, Jang H J, et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl Phys Lett, 2001, 78, 3265

[714]

Mehnke F, Kuhn C, Guttmann M, et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl Phys Lett, 2014, 105, 051113

[715]

Tsai C L, Liu H H, Chen J W, et al. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template. Solid-State Electron, 2017, 138, 84

[716]

Zhang Z H, Huang Chen S W, Zhang Y, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes. ACS Photonics, 2017, 4, 1846

[717]

Tsai M C, Yen S H, Kuo Y K. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl Phys Lett, 2011, 98, 111114

[718]

Kolbe T, Sembdner T, Knauer A, et al. (In)AlGaN deep ultraviolet light emitting diodes with optimized quantum well width. Phys Status Solidi A, 2010, 207, 2198

[719]

Norimichi N, Hirayama H, Yatabe T, et al. 222 nm single-peaked deep-UV LED with thin AlGaN quantum well layers. Phys Status Solidi C, 2009, 6, S459

[720]

Hirayama H, Noguchi N, Yatabe T, et al. 227 nm AlGaN light-emitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density. Appl Phys Express, 2008, 1, 051101

[721]

Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 071901

[722]

Xiu X, Zhang L, Li Y, Xiong Z, et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J Semicond, 2019, 40, 011805

[723]

Pratiyush A S, Krishnamoorthy S, Muralidharan R, et al. Advances in Ga2O3 solar-blind UV photodetectors. In: Gallium Oxide. Elsevier, 2019, 369

[724]

Sedhain A, Lin J Y, Jiang H X. Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN. Appl Phys Lett, 2012, 100, 221107

[725]

Bickermann M, Epelbaum B M, Filip O, et al. Deep-UV transparent bulk single-crystalline AlN substrates. Phys Status Solidi C, 2010, 7, 1743

[726]

Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 2008, 310, 4020

[727]

Bickermann M, Epelbaum B M, Winnacker A. PVT growth of bulk AlN crystals with low oxygen contamination. Phys Status Solidi C, 1993, 1993

[728]

Slack G A, Schowalter L J, Morelli D, et al. Some effects of oxygen impurities on AlN and GaN. J Cryst Growth, 2002, 246, 287

[729]

Haughn C R, Rupper G, Wunderer T, et al. Highly radiative nature of ultra-thin c-plane Al-rich AlGaN/AlN quantum wells for deep ultraviolet emitters. Appl Phys Lett, 2019, 114, 102101

[730]

Chu C, Tian K, Zhang Y, et al. Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes. Phys Status Solidi A, 2019, 216, 1800815

[731]

Bryan I, Bryan Z, Washiyama S, et al. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl Phys Lett, 2018, 112, 062102

[732]

Kirste R, Mita S, Guo Q, et al. Recent breakthroughs in AlGaNbased UV light emitters. IEEE Research and Applications of Photonics In Defense Conference (RAPID), 2018, 18196129

[733]

Bryan I, Bryan Z, Mita S, et al. Surface kinetics in AlN growth: A universal model for the control of surface morphology in III-nitrides. J Cryst Growth, 2016, 438, 81

[734]

Hartmann C, Wollweber J, Dittmar A, et al. Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn J Appl Phys, 2013, 52, 08JA06

[735]

Sumathi R R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. Cryst Eng Comm, 2013, 15, 2232

[736]

Mokhov E, Izmaylova I, Kazarova O, et al. Specific features of sublimation growth of bulk AlN crystals on SiC wafers. Phys Status Solidi C, 2013, 10, 445

[737]

Park S H, Shim J I. Carrier density dependence of polarization switching characteristics of light emission in deep-ultraviolet AlGaN/AlN quantum well structures. Appl Phys Lett, 2013, 102, 221109

[738]

Dalmau R, Moody B, Xie J, et al. Characterization of dislocation arrays in AlN single crystals grown by PVT. Phys Status Solidi A, 2011, 208, 1545

[739]

Herro Z, Zhuang D, Schlesser R, et al. Growth of AlN single crystalline boules. J Cryst Growth, 2010, 312, 2519

[740]

Kinoshita T, Obata T, Nagashima T, et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2013, 6, 092103

[741]

Kinoshita T, Hironaka K, Obata T, et al. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2012, 5, 122101

[742]

Grandusky J R, Chen J, Gibb S R, et al. 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl Phys Express, 2013, 6, 032101

[743]

An Y, Sun Y, Zhang M, et al. Tuning the electronic structures and transport properties of zigzag blue phosphorene nanoribbons. IEEE Trans Electron Devices, 2018, 65, 4646

[744]

Liu H, Neal A T, Zhu Z, Luo Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033

[745]

Zhang M, An Y, Sun Y, et al. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures. Phys Chem Chem Phys, 2017, 19, 17210

[746]

Li F, Liu X, Wang Y, et al. Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility. J Mater Chem C, 2016, 4, 2155

[747]

Dagan R, Vaknin Y, Henning A, et al. Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers. Appl Phys Lett, 2019, 114, 101602

[748]

Zhou X, Hu X, Yu J, et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv Funct Mater, 2018, 28, 1706587

[749]

Nayeri M, Fathipour M. A numerical analysis of electronic and optical properties of the zigzag MoS2 nanoribbon under uniaxial strain. IEEE Trans Electron Devices, 2018, 65, 1988

[750]

Fan Z Q, Jiang X W, Luo J W, et al. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys Rev B, 2017, 96, 165402

[751]

An Y, Zhang M, Wu D, et al. The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions. J Mater Chem C, 2016, 4, 10962

[752]

Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett, 2014, 14, 5590

[753]

Zhao J, Cheng K, Han N, et al. Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures. Wiley Interdiscip Rev Comput Mol Sci, 2018, 8, e1353

[754]

Koppens F H L, Mueller T, Avouris P, et al . Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9, 780

[755]

Zhu X, Lei S, Tsai S H, et al. A study of vertical transport through graphene toward control of quantum tunneling. Nano Lett, 2018, 18, 682

[756]

Asres G A, J?rvinen T, Lorite G S,et al. High photoresponse of individual WS2 nanowire-nanoflake hybrid materials. Appl Phys Lett, 2018, 112, 233103

[757]

Chu D, Lee Y H, Kim E K. Selective control of electron and hole tunneling in 2D assembly. Sci Adv, 2017, 3, e1602726

[758]

Yamaguchi T, Moriya R, Inoue Y, et al. Tunneling transport in a few monolayer-thick WS2/graphene heterojunction. Appl Phys Lett, 2014, 105, 223109

[759]

Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics, 2014, 8, 899

[760]

Kim S, Oh S, Kim J. Ultrahigh deep-UV sensitivity in graphene-gated β-Ga2O3 phototransistors. ACS Photonics, 2019, 6, 1026

[761]

Schubert M, Mock A, Korlacki R, et al. Longitudinal phonon plasmon mode coupling in β-Ga2O3. Appl Phys Lett, 2019, 114, 102102

[762]

Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Electrical properties of bulk semi-insulating β-Ga2O3(Fe). Appl Phys Lett, 2018, 113, 142102

[763]

Hu Z, Nomoto K, Li W, et al. Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl Phys Lett, 2018, 113, 122103

[764]

Joishi C, Xia Z, McGlone J, et al. Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl Phys Lett, 2018, 113, 123501

[765]

Neal A T, Mou S, Rafique S, et al. Donors and deep acceptors in β-Ga2O3. Appl Phys Lett, 2018, 113, 062101

[766]

Wong M H, Lin C H, Kuramata A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl Phys Lett, 2018, 113, 102103

[767]

Yang J, Ren F, Tadjer M, et al. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW·cm-2 figure-of-merit. AIP Adv, 2018, 8, 055026

[768]

Lee S U, Jeong J. Short time helium annealing for solution-processed amorphous indium-gallium-zinc-oxide thin film transistors. AIP Adv, 2018, 8, 085206

[769]

Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl Phys Lett, 2018, 113, 092102

[770]

Gibbon J T, Jones L, Roberts J W, et al. Band alignments at Ga2O3 heterojunction interfaces with Si and Ge. AIP Adv, 2018, 8, 065011

[771]

Zhang S, Lian X, Ma Y, et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J Semicond, 2018, 39, 083003

[772]

Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. J Appl Phys, 2018, 123, 115702

[773]

Zhang K, Feng Q, Huang L, et al. (InxGa1– x)2O3 photodetectors fabricated on sapphire at different temperatures by PLD. IEEE Photon J, 2018, 10, 6802508

[774]

Feng Q, Hu Z, Feng Z, et al. Research on the growth of β-(AlGa)2O3 film and the analysis of electrical characteristics of Ni/Au Schottky contact using Tung’s model. Superlattices Microstruct, 2018, 120, 441-447

[775]

Feng Q, Feng Z, Hu Z, et al. Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode. Appl Phys Lett, 2018, 112, 072103

[776]

Zhang Y, Joishi C, Xia Z, et al. Demonstration of β-(AlxGa1– x)2O3/ Ga2O3 double heterostructure field effect transistors. Appl Phys Lett, 2018, 112, 233503

[777]

Zhang Y, Neal A, Xia Z, et al. Demonstration of high mobility and quantum transport in modulationdoped β-(AlxGa1– x)2O3/Ga2O3 heterostructures. Appl Phys Lett, 2018, 112, 173502

[778]

Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9, 36997-37005

[779]

Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46, 7217

[780]

Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics, 2017, 4, 2203

[781]

Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166

[782]

Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 2017, 110, 221107

[783]

Guo D, Wu Z, Li P, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express, 2014, 4, 1067

[784]

Moudgil A, Dhyani V, Das S. High speed efficient ultraviolet photodetector based on 500 nm width multiple WO3 nanowires. Appl Phys Lett, 2018, 113, 101101

[785]

Khan F, Khan W, Kim J H, et al. Oxygen desorption kinetics of ZnO nanorod-gated AlGaN/GaN HEMT-based UV photodetectors. AIP Adv, 2018, 8, 075225

[1]

Wang L, Xie R J, Suehiro T, et al. Down-conversion nitride materials for solid state lighting: Recent advances and perspectives. Chem Rev, 2018, 118, 1951

[2]

Alhassan A I, Young N G, Farrell R M, et al. Development of high performance green c-plane III-nitride light-emitting diodes. Opt Express, 2018, 26, 5591

[3]

Pimputkar S, Speck J S, DenBaars S P, et al. Prospects for LED lighting. Nat Photonics, 2009, 3, 180

[4]

Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl Phys Lett, 2004, 85, 3696

[5]

Matafonova G, Batoev V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review. Water Res, 2018, 132, 177

[6]

Chen J, Loeb S, Kim J H. LED revolution: fundamentals and prospects for UV disinfection applications. Environ Sci: Water Res Technol, 2017, 3, 188

[7]

Chen Q, Zhang H, Dai J. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle. IEEE Photonics J, 2018, 10, 6100807

[8]

Hirayama H, Fujikawa S, Kamata N. Recent progress in AlGaN-based deep-UV LEDs. Electron Commun Jpn, 2015, 98, 1

[9]

Aoyagi Y, Takeuchi M, Yoshida K, et al. High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone. J Environ Prot, 2012, 3, 695

[10]

Würtele M, Kolbe T, Lipsz M, et al. Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection. Water Res, 2011, 45, 1481

[11]

Alhamoud A A, Alfaraj N, Priante D, et al. Functional integrity and stable high-temperature operation of planarized ultraviolet-A AlxGa1?xN/AlyGa1?yN multiple-quantum-disk nanowire LEDs with charge-trapping inhibition interlayer. Gallium Nitride Materials and Devices XIV. Vol. 10918, 2019, 109181X

[12]

Jasuja K, Ayinde K, Wilson C L, et al. Introduction of protonated sites on exfoliated, large-area sheets of hexagonal boron nitride. ACS Nano, 2018, 12, 9931

[13]

Pacilé D, Meyer J C, Girit ? ?, et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92, 133107

[14]

Srinivasan S, Stevens M, Ponce F A, et al. Carrier dynamics and electrostatic potential variation in InGaN quantum wells grown on \scriptsize$ \left\{ {11\bar 22} \right\}$ GaN pyramidal planes. Appl Phys Lett, 2006, 89, 231908

[15]

ElAfandy R T, Majid M A, Ng T K, et al. Exfoliation of threading dislocation-free, singlecrystalline, ultrathin gallium nitride nanomembranes. Adv Funct Mater, 2014, 24, 2305

[16]

Hirayama H. Ultraviolet LEDs. In: Nitride Semiconductor Light-Emitting Diodes (LEDs). Elsevier, 2014, 497

[17]

Orji N G, Badaroglu M, Barnes B M, et al. Metrology for the next generation of semiconductor devices. Nat Electron, 2018, 1, 532

[18]

Ayari T, Sundaram S, Li X, et al. Heterogeneous integration of thin-film InGaN-based solar cells on foreign substrates with enhanced performance. ACS Photonics, 2018, 5, 3003

[19]

Liu S, Sheng B, Wang X, et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Appl Phys Lett, 2018, 112, 231904

[20]

Yuan C, Pomeroy J W, Kuball M. Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers. Appl Phys Lett, 2018, 113, 102101

[21]

Jiang J, Guo W, Xu H, et al. Performance enhancement of ultraviolet light emitting diode incorporating Al nanohole arrays. Nanotechnology, 2018, 29, 45LT01

[22]

Ishibe T, Kurokawa T, Naruse N, et al. Resistive switching at the high quality metal/insulator interface in Fe3O4/SiO2/α-FeSi2/Si stacking structure. Appl Phys Lett, 2018, 113, 141601

[23]

Priante D, Janjua B, Prabaswara A, et al. Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer. Opt Mater Express, 2017, 7, 4214

[24]

Sumikura H, Kuramochi E, Notomi M. Nonlinear optical absorption of beryllium isoelectronic centers doped in silicon waveguides. Appl Phys Lett, 2018, 113, 141101

[25]

Priante D, Janjua B, Prabaswara A, et al Ti/TaN bilayer for efficient injection and reliable AlGaN nanowires LEDs. Conference on Lasers and ElectroOptics, 2018, JTu2A.91

[26]

Zhang R, Zhao B, Huang K, et al. Silicon-on-insulator with hybrid orientations for heterogeneous integration of GaN on Si (100) substrate. AIP Adv, 2018, 8, 055323

[27]

Patil S S, Johar M A, Hassan M A, et al. Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation. Appl Catal B, 2018, 237, 791

[28]

Ajima Y, Nakamura Y, Murakami K, et al. Room-temperature bonding of GaAs//Si and GaN//GaAs wafers with low electrical resistance. Appl Phys Express, 2018, 11, 106501

[29]

Liu X, Sun C, Xiong B, et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Appl Phys Lett, 2018, 113, 171106

[30]

Zhao C, Alfaraj N, Subedi R C, et al. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog Quantum Electron, 2018, 61, 1

[31]

Houlton J P, Brubaker M D, Martin D O, et al. An optical Bragg scattering readout for nano-mechanical resonances of GaN nanowire arrays. Appl Phys Lett, 2018, 113, 123102

[32]

Maity A, Grenadier S J, Li J, et al. Hexagonal boron nitride neutron detectors with high detection efficiencies. J Appl Phys, 2018, 123, 044501

[33]

Maity A, Grenadier S J, Li J, et al. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors. Appl Phys Lett, 2017, 111, 033507

[34]

Ahmed K, Dahal R, Weltz A, et al. Solid-state neutron detectors based on thickness scalable hexagonal boron nitride. Appl Phys Lett, 2017, 110, 023503

[35]

Alden D, Troha T, Kirste R, et al. Quasi-phase-matched second harmonic generation of UV light using AlN waveguides. Appl Phys Lett, 2019, 114, 103504

[36]

Bruch A W, Liu X, Guo X, et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl Phys Lett, 2018, 113, 131102

[37]

Du C, Hu W, Wang Z L. Recent progress on piezotronic and piezo-phototronic effects in III-group nitride devices and applications. Adv Eng Mater, 2018, 20, 1700760

[38]

Kim H J, Jung S I, Segovia-Fernandez J, et al. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators. AIP Adv, 2018, 8, 055009

[39]

Cassella C, Chen G, Qian Z, et al. RF passive components based on aluminum nitride crosssectional lamé-mode MEMS resonators. IEEE Trans Electron Devices, 2017, 64, 237

[40]

Wang X, Song J, Zhang F, et al. Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv Mater, 2010, 22, 2155

[41]

Yu R, Wu W, Ding Y, et al. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano, 2013, 7, 6403

[42]

Zhang H, Zhang Q, Lin M, et al. A GaN/InGaN/AlGaN MQW RTD for versatile MVL applications with improved logic stability. J Semicond, 2018, 39, 074004

[43]

Springbett H, Gao K, Jarman J, et al. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl Phys Lett, 2018, 113, 101107

[44]

Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 2016, 16, 4317

[45]

Vuong T, Cassabois G, Valvin P, et al. Phonon-photon mapping in a color center in hexagonal boron nitride. Phys Rev Lett, 2016, 117, 097402

[46]

Elafandy R T, Ebaid M, Min J W, et al. Flexible InGaN nanowire membranes for enhanced solar water splitting. Opt Express, 2018, 26, A640

[47]

Zhang H, Ebaid M, Min J W, et al. Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. J Appl Phys, 2018, 124, 083105

[48]

Kim Y J, Lee G J, Kim S, et al. Efficient light absorption by GaN truncated nanocones for high performance water splitting applications. ACS Appl Mater Interfaces, 2018, 10, 28672

[49]

Ebaid M, Min J W, Zhao C, et al. Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. J Mater Chem A, 2018, 6, 6922

[50]

Ebaid M, Priante D, Liu G, et al. Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods. Nano Energy, 2017, 37, 158

[51]

Sekimoto T, Hashiba H, Shinagawa S, et al. Wireless InGaN-Si/Pt device for photo-electrochemical water splitting. Jpn J Appl Phys, 2016, 55, 088004

[52]

Lin C H, Fu H C, Cheng B, et al. A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. NPJ 2D Mater Appl, 2018, 2, 23

[53]

Tan X, Lv Y J, Zhou X Y, et al. AlGaN/GaN pressure sensor with a Wheatstone bridge structure. AIP Adv, 2018, 8, 085202

[54]

Mehnke F, Guttmann M, Enslin J, et al. Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs. IEEE J Sel Top Quantum Electron, 2017, 23, 29

[55]

Pyo J Y, Jeon J H, Koh Y, et al. AlGaN/GaN high-electronmobility transistor pH sensor with extended gate platform. AIP Adv, 2018, 8, 085106

[56]

Cao H, Ma Z, Sun B, et al. Composite degradation model and corresponding failure mechanism for mid-power GaN-based white LEDs. AIP Adv, 2018, 8, 065108

[57]

Janjua B, Ng T K, Zhao C, et al. True yellow light-emitting diodes as phosphor for tunable color-rendering index laser-based white light. ACS Photonics, 2016, 3, 2089

[58]

Guo W, Banerjee A, Bhattacharya P, et al. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl Phys Lett, 2011, 98, 193102

[59]

Lee C, Shen C, Cozzan C, et al. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt Express, 2017, 25, 17480

[60]

Yu F, Strempel K, Fatahilah M F, et al. Normally off vertical 3-D GaN nanowire MOSFETs with inverted p-GaN channel. IEEE Trans Electron Devices, 2018, 65, 2439

[61]

Yin L, Du G, Liu X. Impact of ambient temperature on the self-heating effects in FinFETs. J Semicond, 2018, 39, 094011

[62]

Alfaraj N, Hussain A M, Torres Sevilla G A, et al. Functional integrity of flexible n-channel metal-oxide-semiconductor fieldeffect transistors on a reversibly bistable platform. Appl Phys Lett, 2015, 107, 174101

[63]

Zhou X, Tan X, Wang Y, et al. Coeffect of trapping behaviors on the performance of GaN-based devices. J Semicond, 2018, 39, 094007

[64]

Zhao J, Xing Y, Fu K, et al. Influence of channel/back-barrier thickness on the breakdown of AlGaN/GaN MISHEMTs. J Semicond, 2018, 39, 094003

[65]

Mallick G, Elder R M. Graphene/hexagonal boron nitride heterostructures: Mechanical properties and fracture behavior from nanoindentation simulations. Appl Phys Lett, 2018, 113, 121902

[66]

Zhang Z, Chen J. Thermal conductivity of nanowires. Chin Phys B, 2018, 27, 035101

[67]

Sztein A, Bowers J E, DenBaars S P, et al. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Appl Phys Lett, 2014, 104, 042106

[68]

Sztein A, Bowers J E, DenBaars S P, et al. Thermoelectric properties of lattice matched InAlN on semi-insulating GaN templates. J Appl Phys, 2012, 112, 083716

[69]

Sztein A, Ohta H, Sonoda J, et al. GaN-based integrated lateral thermoelectric device for micro-power generation. Appl Phys Express, 2009, 2, 111003

[70]

Liu W, Balandin A A. Thermoelectric effects in wurtzite GaN and Al xGa1– xN alloys. J Appl Phys, 2005, 97, 123705

[71]

Mark S. Lundstrom (private communication, 2017)

[72]

Wang D, Chen Z Y, Wang T, et al. Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Appl Phys Lett, 2019, 114, 073503

[73]

Franckié M, Bosco L, Beck M, et al. Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling. Appl Phys Lett, 2018, 112, 021104

[74]

Andrews A M, Zederbauer T, Detz H, et al. THz quantum cascade lasers. In: Molecular Beam Epitaxy. Elsevier, 2018, 597

[75]

Wang F, Lee J, Phillips D J, et al. A high-efficiency regime for gas-phase terahertz lasers. Proc Natl Acad Sci USA, 2018, 115, 6614

[76]

Encomendero J, Yan R, Verma A, et al. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2. Appl Phys Lett, 2018, 112, 103101

[77]

Encomendero J, Faria F A, Islam S M, et al. New tunneling features in polar III-nitride resonant tunneling diodes. Phys Rev X, 2017, 7, 041017

[78]

Alves T E P, Kolodziej C, Burda C, et al. Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater Des, 2018, 146, 125

[79]

Ghoneim M T, Sadraei A, P de Souza, et al. A protocol to characterize pH sensing materials and systems. Small Methods, 2019, 3, 1800265

[80]

Lan W, Yang Z, Zhang Y, et al. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces. Appl Surf Sci, 2018, 433, 821

[81]

Zhang B P, Binh N T, Wakatsuki K, et al. Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect. Appl Phys Lett, 2005, 86, 032105

[82]

Maeda T, Narita T, Kanechika M, et al. Franz-Keldysh effect in GaN p–n junction diode under high reverse bias voltage. Appl Phys Lett, 2018, 112, 252104

[83]

Maeda T, Chi X, Horita M, et al. Phonon-assisted optical absorption due to Franz-Keldysh effect in 4H-SiC p-n junction diode under high reverse bias voltage. Appl Phys Express, 2018, 11, 091302

[84]

Bridoux G, Villafuerte M, Ferreyra J M, et al. Franz-Keldysh effect in epitaxial ZnO thin films. Appl Phys Lett, 2018, 112, 092101

[85]

Tangi M, Min J W, Priante D, et al. Observation of piezotronic and piezophototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. Nano Energy, 2018, 54, 264

[86]

Elahi H, Eugeni M, Gaudenzi P. A review on mechanisms for piezoelectric-based energy harvesters. Energies, 2018, 11, 1850

[87]

Dan M, Hu G, Li L, et al. High performance piezotronic logic nanodevices based on GaN/InN/GaN topological insulator. Nano Energy, 2018, 50, 544

[88]

Zhu R, Yang R. Introduction to the piezotronic effect and sensing applications. In: Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Springer, 2018, 1

[89]

Zhao C, Ebaid M, Zhang H, et al. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale, 2018, 10, 15980

[90]

Liang Y H, Towe E. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl Phys Rev, 2018, 5, 011107

[91]

Amano H, Kito M Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J Appl Phys, 1989, 28, L2112

[92]

Akasaki I, Amano H, Kito M, et al. Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p–n junction LED. J Lumin, 1991, 48, 666

[93]

Nakamura S, Senoh M, S Nagahama, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett, 1998, 72, 211

[94]

Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35, L74

[95]

Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-lightemitting diodes. Appl Phys Lett, 1994, 64, 1687

[96]

Amano H, Kitoh M, Hiramatsu K, et al. Growth and luminescence properties of Mg-doped GaN prepared by MOVPE. J Electrochem Soc, 1990, 137, 1639

[97]

Bilenko Y, Lunev A, Hu X, et al. 10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes. Jpn J Appl Phys, 2004, 44(L98), L98

[98]

Bigio I J, Mourant J R. Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys Med Biol, 1997, 42, 803

[99]

Hirayama H, Maeda N, Fujikawa S, et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2014, 53, 100209

[100]

Kang B S, Wang H T, Ren F, et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J App Phys, 2008, 104, 8

[101]

Cho H K, Külberg A, Ploch N L, et al. Bow reduction of AlInGaN-based deep UV LED wafers using focused laser patterning. IEEE Photonics Technol Lett, 2018, 30, 1792

[102]

Janjua B, Priante D, Prabaswara A, et al. Ultraviolet-A LED based on quantum-disks-in-AlGaN-nanowires–Optimization and device reliability. IEEE Photonics J, 2018, 10, 2200711

[103]

SaifAddin B, Zollner C J, Almogbel A, et al. Developments in AlGaN and UVC LEDs grown on SiC. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXII. Vol. 10554. International Society for Optics and Photonics, 2018, 105541E

[104]

Islam S M, Protasenko V, Bharadwaj S, et al Enhancing wall-plug efficiency for deep-UV light-emitting diodes: From crystal growth to devices. In: Light-Emitting Diodes. Springer, 2019, 337.

[105]

Wang X, Peng W, Yu R, et al. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett, 2017, 17, 3718

[106]

Al Balushi Z Y, Redwing J M. In situ stress measurements during MOCVD growth of thick N-polar InGaN. J Appl Phys, 2017, 122, 085303

[107]

Al Balushi Z Y, Redwing J M. The effect of polarity on MOCVD growth of thick InGaN. Appl Phys Lett, 2017, 110, 022101

[108]

McLaurin M, Mates T E, Wu F, et al. Growth of p-type and n-type m-plane GaN by molecular beam epitaxy. J Appl Phys, 2006, 100, 063707

[109]

Sugahara T, Sato H, Hao M, et al. Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn J Appl Phys, 1998, 37, L398

[110]

Boguslawski P , Bernholc J. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys Rev B, 1997, 56, 9496

[111]

Chen Z, Zhang X, Dou Z, et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv Mater, 2018, 30, 1801608

[112]

Qi Y, Wang Y, Pang Z, et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J Am Chem Soc, 2018, 140, 11935

[113]

Yan P, Tian Q, Yang G, et al. Epitaxial growth and interfacial property of monolayer MoS2 on gallium nitride. RSC Adv, 2018, 8, 33193

[114]

Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 2017, 10, 031002

[115]

Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl Phys Lett, 2003, 83, 878

[116]

Van de Walle C G, Stampfl C, Neugebauer J. Theory of doping and defects in III–V nitrides. J Cryst Growth, 1998, 189/190, 505

[117]

Kolbe T, Knauer A, Chua C, et al. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2010, 97, 171105

[118]

Cantu P, Keller S, Mishra U K, et al. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl Phys Lett, 2003, 82, 3683

[119]

Nam K B, Li J, Nakarmi M L, et al. Achieving highly conductive AlGaN alloys with high Al contents. Appl Phys Lett, 2002, 81, 1038

[120]

Nippert F, Tollabi Mazraehno M, Davies M J, et al. Auger recombination in AlGaN quantum wells for UV light-emitting diodes. Appl Phys Lett, 2018, 113, 071107

[121]

Kioupakis E, Rinke P, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl Phys Lett, 2011, 98, 161107

[122]

Zhang M, Bhattacharya P, Singh J, et al. Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2009, 95, 201108

[123]

Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett, 2007, 91, 141101

[124]

Yun J, Shim J I, Hirayama H. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Appl Phys Express, 2015, 8, 022104

[125]

Dreyer C E, Alkauskas A, Lyons J L, et al. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl Phys Lett, 2016, 108, 141101

[126]

Karpov S Y, Makarov Y N. Dislocation effect on light emission efficiency in gallium nitride. Appl Phys Lett, 2002, 81, 4721

[127]

Nagasawa Y, Hirano A. A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire. Appl Sci, 2018, 8, 1264

[128]

Hakamata J, Kawase Y, Dong L, et al. Growth of high-quality AlN and AlGaN films on sputtered AlN/sapphire templates via high-temperature annealing. Phys Status Solidi B, 2018, 255, 1700506

[129]

Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys, 1992, 31, L139

[130]

Liang F, Yang J, Zhao D G, et al. Resistivity reduction of low temperature grown p-Al0.09Ga0.91N by suppressing the incorporation of carbon impurity. AIP Adv, 2018, 8, 085005

[131]

H?mmerich U, Nyein E E, Lee D, et al. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN. Mater Sci Eng B, 2003, 105, 91

[132]

Chen M T, Lu M P, Wu Y J, et al. Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett, 2010, 10, 4387

[133]

Derluyn J, Boeykens S, Cheng K, et al. Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J Appl Phys, 2005, 98, 054501

[134]

Fujiwara H, Sasaki K. Amplified spontaneous emission from a surface-modified GaN film fabricated under pulsed intense UV laser irradiation. Appl Phys Lett, 2018, 113, 171606

[135]

Ng T K, Yan J. Special section guest editorial: Semiconductor UV photonics. J Nanophotonics, 2018, 12, 043501

[136]

Guo Y, Yan J, Zhang Y, et al. Enhancing the light extraction of AlGaN-based ultraviolet light-emitting diodes in the nanoscale. J Nanophotonics, 2018, 12, 043510

[137]

Alias M S, Tangi M, Holguin-Lerma J A, et al. Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices. J Nanophotonics, 2018, 12, 043508

[138]

Min J W, Priante D, Tangi M, et al. Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. J Nanophotonics, 2018, 12, 043511

[139]

Sun J, Lu C, Song Y, et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem Soc Rev, 2018, 47, 4242

[140]

Jiang H X, Lin J Y. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond Sci Technol, 2014, 29, 084003

[141]

Giovannetti G, Khomyakov P A, Brocks G, et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B, 2007, 76, 073103

[142]

Kang C H, Shen C, Saheed M S M, et al. Carbon nanotubegraphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. Appl Phys Lett, 2016, 109, 081902

[143]

Tangi M, Shakfa M K, Mishra P, et al. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS2. Opt Mater Express, 2017, 7, 3697

[144]

Mak K F, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12, 207

[145]

Tadjer M J, Koehler A D, Freitas J A, et al. High resistivity halide vapor phase homoepitaxial β-Ga2O3 films Co-doped by silicon and nitrogen. Appl Phys Lett, 2018, 113, 192102

[146]

Li W, Zhao X, Zhi Y, et al. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors. Appl Opt, 2018, 57, 538

[147]

Higashiwaki M, Jessen G H. The dawn of gallium oxide microelectronics. Appl Phys Lett, 2018, 112, 060401

[148]

Peelaers H, Varley J B, Speck J S, et al. Structural and electronic properties of Ga2O3–Al2O3 alloys. Appl Phys Lett, 2018, 112, 242101

[149]

Pearton S J, Yang J, Cary I V P H , et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301

[150]

Yang T H, Fu H, Chen H, et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J Semicond, 2019, 40, 012801

[151]

Lu X, Zhou L, Chen L, et al. X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method. ECS J Solid State Sci Technol, 2019, 8, Q3046

[152]

Cheng Z, Hanke M, Galazka Z, et al. Thermal expansion of single-crystalline β-Ga2O3 from RT to 1200 K studied by synchrotron-based high resolution x-ray diffraction. Appl Phys Lett, 2018, 113, 182102

[153]

Katre A, Carrete J, Wang T, et al. Phonon transport unveils the prevalent point defects in GaN. Phys Rev Mater, 2018, 2, 050602

[154]

Imura M, Ota Y, Banal R G, Liao M, et al. Effect of boron incorporation on structural and optical properties of AlN layers grown by metalorganic vapor phase epitaxy. Phys Status Solidi A, 2018, 215(21), 1800282

[155]

Kojima K, Takashima S, Edo M, et al. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate. Appl Phys Express, 2017, 10, 061002

[156]

Kamimura J, Bogdanoff P, Ramsteiner M, et al. p-type doping of GaN nanowires characterized by photoelectrochemical measurements. Nano Lett, 2017, 17, 1529

[157]

Pavesi M, Manfredi M, Salviati G, et al. Optical evidence of an electrothermal degradation of InGaN-based light-emitting diodes during electrical stress. Appl Phys Lett, 2004, 84, 3403

[158]

Reboredo F A, Pantelides S T. Novel defect complexes and their role in the p-type doping of GaN. Phys Rev Lett, 1999, 82, 1887

[159]

Miceli G, Pasquarello A. Self-compensation due to point defects in Mg-doped GaN. Phys Rev B, 2016, 93, 165207

[160]

Dai Q, Zhang X, Wu Z, et al. Effects of Mg-doping on characteristics of semi-polar ( $ 11\bar 22$ ) plane p-AlGaN films. Mater Lett, 2017, 209, 472

[161]

Pampili P, Parbrook P J. Doping of III-nitride materials. Mater Sci Semicond Process, 2017, 62, 180

[162]

Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441, 325

[163]

Taniyasu Y, Kasu M, Kobayashi N. Intentional control of n-type conduction for Si-doped AlN and Al xGa1– xN (0.42 ≤ x < 1). Appl Phys Lett, 2002, 81, 1255

[164]

Nakarmi M L, Kim K H, Zhu K, et al. Transport properties of highly conductive n-type Alrich Al xGa1– xN (x ≥ 0.7). Appl Phys Lett, 2004, 85, 3769

[165]

Collazo R, Mita S, Xie J, et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys Status Solidi C, 2011, 8, 2031

[166]

Mehnke F, Wernicke T, Pingel H, et al. Highly conductive n-Al xGa1– xN layers with aluminum mole fractions above 80%. Appl Phys Lett, 2013, 103, 212109

[167]

Nakarmi M L, Nepal N, Ugolini C, et al. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl Phys Lett, 2006, 89, 152120

[168]

Mireles F, Ulloa S E. Acceptor binding energies in GaN and AlN. Phys Rev B, 1998, 58, 3879

[169]

Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mg-doped p-type Al xGa1– xN. Appl Phys Lett, 2002, 80, 1210

[170]

Sarwar A T M G, May B J, Deitz J I, et al. Tunnel junction enhanced nanowire ultraviolet light emitting diodes. Appl Phys Lett, 2015, 107, 101103

[171]

Kaneko M, Ueta S, Horita M, et al. Deep-ultraviolet light emission from 4H-AlN/4H-GaN short-period superlattice grown on 4H-SiC( $ 11\bar 20$ ). Appl Phys Lett, 2018, 112, 012106

[172]

Liu S, Ye C, Cai X, et al. Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer. Appl Phys A, 2016, 122, 527

[173]

Kozodoy P, Hansen M, DenBaars S P, et al. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl Phys Lett, 1999, 74, 3681

[174]

Sun H, Yin J, Pecora E F, et al. Deep-ultraviolet emitting AlGaN multiple quantum well graded-index separate-confinement heterostructures grown by MBE on SiC substrates. IEEE Photon J, 2017, 9, 2201109

[175]

Sun H, Pecora E F, Woodward J, et al. Effect of indium in Al0.65Ga0.35N/Al0.8Ga0.2N MQWs for the development of deep-UV laser structures in the form of graded-index separate confinement heterostructure (GRINSCH). Phys Status Solidi A, 2016, 213, 1165

[176]

Sun H, Woodward J, Yin J, et al. Development of AlGaN-based graded-index-separate-confinement-heterostructure deep UV emitters by molecular beam epitaxy. J Vac Sci Technol B, 2013, 31, 03C117

[177]

Sun H, Moustakas T D. UV emitters based on an AlGaN p-n junction in the form of graded-index separate confinement heterostructure. Appl Phys Express, 2013, 7, 012104

[178]

Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327, 60

[179]

Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes. Appl Phys Lett, 2017, 110, 071103

[180]

Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041

[181]

Gaddy B E, Bryan Z, Bryan I, et al. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN. Appl Phys Lett, 2014, 104, 202106

[182]

Wu H, Zheng R, Liu W, et al. C and Si codoping method for p-type AlN. J Appl Phys, 2010, 108, 053715

[183]

Tran N H, Le B H, Zhao S, et al. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-widebandgap AlN nanostructures. Appl Phys Lett, 2017, 110, 032102

[184]

Connie A T, Zhao S, Sadaf S M, et al. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy. Appl Phys Lett, 2015, 106, 213105

[185]

Sedhain A, Al Tahtamouni T M, Li J, et al. Beryllium acceptor binding energy in AlN. Appl Phys Lett, 2008, 93, 141104

[186]

Wu R, Shen L, Yang M, et al. Possible efficient p-type doping of AlN using Be: An ab initio study. Appl Phys Lett, 2007, 91, 152110

[187]

Szabó ?, Son N T, Janzén E, et al. Group-II acceptors in wurtzite AlN: A screened hybrid density functional study. Appl Phys Lett, 2010, 96, 192110

[188]

Soltamov V A, Rabchinskii M K, Yavkin B V, et al. Properties of AlN single crystals doped with Beryllium via high temperature diffusion. Appl Phys Lett, 2018, 113, 082104

[189]

Wang Q, Bowen C R, Lewis R, et al. Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting. Nano Energy, 2019, 60, 144

[190]

Puchta R. A brighter beryllium. Nat Chem, 2011, 3, 416

[191]

Park J H, Kim D Y, Schubert E F, et al. Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett, 2018, 3, 655

[192]

Kamiyama S, Iwaya M, Hayashi N, et al. Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. J Cryst Growth, 2001, 223, 83

[193]

Islam S M, Lee K, Verma J, et al. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl Phys Lett, 2017, 110, 041108

[194]

Wang L Y, Song W D, Hu W X, et al. Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer. Chin Phys B, 2019, 28, 018503

[195]

Strak P, Kempisty P, Ptasinska M, et al. Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations. J Appl Phys, 2013, 113, 193706

[196]

Long H, Wang S, Dai J, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD. Opt Express, 2018, 26, 680

[197]

Reich C, Guttmann M, Feneberg M, et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl Phys Lett, 2015, 107, 142101

[198]

Verma J, Islam S M, Protasenko V, et al. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl Phys Lett, 2014, 104, 021105

[199]

Verma J, Kandaswamy P K, Protasenko V, et al. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes. Appl Phys Lett, 2013, 102, 041103

[200]

Taniyasu Y, Kasu M. Polarization property of deepultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl Phys Lett, 2011, 99, 251112

[201]

Zhao S, Mi Z. Al(Ga)N nanowire deep ultraviolet optoelectronics. Semicond Semimet, 2017, 96, 167

[202]

Beeler M, Hille P, Schormann J, et al. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures. Nano Lett, 2014, 14, 1665

[203]

Tchernycheva M, Nevou L, Doyennette L, et al. Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells. Phys Rev B, 2006, 73, 125347

[204]

Cociorva D, Aulbur W G, Wilkins J W. Quasiparticle calculations of band offsets at AlN–GaN interfaces. Solid State Commun, 2002, 124, 63

[205]

Binggeli N, Ferrara P, Baldereschi A. Band-offset trends in nitride heterojunctions. Phys Rev B, 2001, 63, 245306

[206]

Kamiya K, Ebihara Y, Kasu M, . Efficient structure for deep-ultraviolet light-emitting diodes with high emission efficiency: A first-principles study of AlN/GaN superlattice. Jpn J Appl Phys, 2012, 51, 02BJ11

[207]

Bayerl D, Islam S M, Jones C M, et al. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl Phys Lett, 2016, 109, 241102

[208]

Islam S M, Protasenko V, Rouvimov S, et al. Sub-230 nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski-Krastanov mode. Jpn J Appl Phys, 2016, 55, 05FF06

[209]

Bayerl D, Kioupakis E. Visible-wavelength polarized-light emission with small-diameter InN nanowires. Nano Lett, 2014, 14, 3709

[210]

Efros A L, Delehanty J B, Huston A L, et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat Nanotechnol, 2018, 13, 278

[211]

Sharma A S, Dhar S. Dependence of strain distribution on In content in InGaN/GaN quantum wires and spherical quantum dots. J Electron Mater, 2018, 47, 1239

[212]

Renard J, Kandaswamy P K, Monroy E, et al. Suppression of nonradiative processes in long-lived polar GaN/AlN quantum dots. Appl Phys Lett, 2009, 95, 131903

[213]

Janjua B, Sun H, Zhao C, et al. Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale, 2017, 9, 7805

[214]

Zhao C, Ng T K, Wei N, et al. Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Lett, 2016, 16, 1056

[215]

Hestroffer K, Leclere C, Cantelli V, et al. In situ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 2012, 100, 212107

[216]

Schumann T, Gotschke T, Limbach F, et al. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology, 2011, 22, 095603

[217]

Ravi L, Boopathi K, Panigrahi P, et al. Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications. Appl Surf Sci, 2018, 449, 213

[218]

Fan S, Zhao S, Chowdhury F A, et al. Molecular beam epitaxial growth of III-nitride nanowire heterostructures and emerging device applications. In: Handbook of GaN Semiconductor Materials and Devices. CRC Press, 2017, 265

[219]

Heilmann M, Munshi A M, Sarau G, et al. Vertically oriented growth of GaN nanorods on Si using graphene as an atomically thin buffer layer. Nano Lett, 2016, 16, 3524

[220]

Zhong Z, Qian F, Wang D, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett, 2003, 3, 343

[221]

Wang R, Nguyen H P T, Connie A T, et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt Express, 2014, 22, A1768

[222]

Parkinson P, Joyce H J, Gao Q, et al. Carrier lifetime and mobility enhancement in nearly defect-free core- shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett, 2009, 9, 3349

[223]

Tham D, Nam C Y, Fischer J E. Defects in GaN nanowires. Adv Funct Mater, 2006, 16, 1197

[224]

Le B H, Zhao S, Liu X, et al. Controlled coalescence of AlGaN nanowire arrays: An architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv Mater, 2016, 28, 8446

[225]

Chang Y L, Wang J, Li F, et al. High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si(111). Appl Phys Lett, 2010, 96, 013106

[226]

Yan R, Gargas D, Yang P. Nanowire photonics. Nat Photonics, 2009, 3, 569

[227]

Qian F, Gradecak S, Li Y, et al. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett, 2005, 5, 2287

[228]

Qian F, Li Y, Gradecak S, et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett, 2004, 4, 1975

[229]

Priante D, Tangi M, Min J W, et al. Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. Opt Mater Express, 2019, 9, 203

[230]

Almutlaq J, Yin J, Mohammed O F, et al. The benefit and challenges of zero-dimensional perovskites. J Phys Chem Lett, 2018, 9, 4131

[231]

Hung N T, Hasdeo E H, Nugraha A R, et al. Quantum effects in the thermoelectric power factor of low-dimensional semiconductors. Phys Rev Lett, 2016, 117, 036602

[232]

Li H, Geelhaar L, Riechert H, et al. Computing equilibrium shapes of wurtzite crystals: The example of GaN. Phys Rev Lett, 2015, 115, 085503

[233]

Schuster F, Winnerl A, Weiszer S, et al. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution. J Appl Phys, 2015, 117, 044307

[234]

Nguyen H P T, Djavid M, Cui K, et al. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 2012, 23, 194012

[235]

Moustakas T D. Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy. MRS Commun, 2016, 6, 247

[236]

Liu K, Sun H, AlQatari F, et al. Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering. Appl Phys Lett, 2017, 111, 222106

[237]

Li X, Wang S, Liu H, et al. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%. Phys Status Solidi B, 2017, 254, 1600699

[238]

Orsal G, Maloufi N, Gautier S, et al. Effect of boron incorporation on growth behavior of BGaN/GaN by MOVPE. J Cryst Growth, 2008, 310, 5058

[239]

Escalanti L, Hart G L W. Boron alloying in GaN. Appl Phys Lett, 2004, 84, 705

[240]

Teles L K, Furthmüller J, Scolfaro L M R, et al. Phase separation and gap bowing in zinc-blende InGaN, InAlN, BGaN, and BAlN alloy layers. Physica E, 2002, 13, 1086

[241]

Teles L K, Scolfaro L M R, Leite J R, et al. Spinodal decomposition in B xGa1– xN and B xAl1– xN alloys. Appl Phys Lett, 2002, 80, 1177

[242]

Edgar J H, Smith D T, Eddy C R Jr, et al. c-Boron-aluminum nitride alloys prepared by ion-beam assisted deposition. Thin Solid Films, 1997, 298, 33

[243]

Jiang H X, Lin J Y. Hexagonal boron nitride epilayers: Growth, optical properties and device applications. ECS J Solid State Sci Technol, 2017, 6, Q3012

[244]

Das T, Chakrabarty S, Kawazoe Y, et al. Tuning the electronic and magnetic properties of graphene/h-BN hetero nanoribbon: A first-principles investigation. AIP Adv, 2018, 8, 065111

[245]

Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science, 2007, 317, 932

[246]

Blase X, Rubio A, Louie S G, et al. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys Rev B, 1995, 51, 6868

[247]

Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron nitride nanotubes. Phys Rev B, 1994, 49, 5081

[248]

Arnaud B, Lebegue S, Rabiller P, et al. Huge excitonic effects in layered hexagonal boron nitride. Phys Rev Lett, 2006, 96, 026402

[249]

Hong X, Wang D, Chung D D L. Boron nitride nanotube mat as a low-k dielectric material with relative dielectric constant ranging from 1.0 to 1.1. J Electron Mater, 2016, 45, 453

[250]

Yin J, Li J, Hang Y, et al. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 2016, 12, 2942

[251]

Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem Soc Rev, 2016, 45, 5541

[252]

Terao T, Zhi C, Bando Y, et al. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C, 2010, 114, 4340

[253]

Zhi C, Bando Y, Tang C, et al. Boron nitride nanotubes. Mater Sci Eng R, 2010, 70, 92

[254]

Henck H, Pierucci D, Fugallo G, et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys Rev B, 2017, 95, 085410

[255]

Grenadier S J, Maity A, Li J, et al. Origin and roles of oxygen impurities in hexagonal boron nitride epilayers. Appl Phys Lett, 2018, 112, 162103

[256]

Du X Z, Li J, Lin J Y, et al. The origins of near band-edge transitions in hexagonal boron nitride epilayers. Appl Phys Lett, 2016, 108, 052106

[257]

Attaccalite C, Bockstedte M, Marini A, et al. Coupling of excitons and defect states in boron-nitride nanostructures. Phys Rev B, 2011, 83, 144115

[258]

Schué L, Sponza L, Plaud A, et al. Bright luminescence from indirect and strongly bound excitons in h-BN. Phys Rev Lett, 2019, 122, 067401

[259]

Watanabe K, Taniguchi T. Jahn-Teller effect on exciton states in hexagonal boron nitride single crystal. Phys Rev B, 2009, 79, 193104

[260]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3, 404

[261]

Solozhenko V L, Lazarenko A G, Petitet J P, et al. Bandgap energy of graphite-like hexagonal boron nitride. J Phys Chem Solids, 2001, 62, 1331

[262]

Carlisle J A, Shirley E L, Terminello L J, et al. Band-structure and core-hole effects in resonant inelastic softx-ray scattering: Experiment and theory. Phys Rev B, 1999, 59, 7433

[263]

Jia J J, Callcott T A, Shirley E L, et al. Resonant inelastic X-ray scattering in hexagonal boron nitride observed by soft-X-ray fluorescence spectroscopy. Phys Rev Lett, 1996, 76, 4054

[264]

Taylor C A, Brown S W, Subramaniam V, et al. Observation of near-band-gap luminescence from boron nitride films. Appl Phys Lett, 1994, 65, 1251

[265]

Lopatin V V, Konusov F V. Energetic states in the boron nitride band gap. J Phys Chem Solids, 1992, 53, 847

[266]

Tarrio C, Schnatterly S E. Interband transitions, plasmons, and dispersion in hexagonal boron nitride. Phys Rev B, 1989, 40, 7852

[267]

Hoffman D M, Doll G L, Eklund P C. Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV. Phys Rev B, 1984, 30, 6051

[268]

Sugino T, Tanioka K, Kawasaki S, et al. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition. Jpn J Appl Phys, 1997, 36, L463

[269]

Carpenter L G, Kirby P J. The electrical resistivity of boron nitride over the temperature range 700 °C to 1400 °C. J Phys D, 1982, 15, 1143

[270]

Davies B M, Bassani F, Brown F C, et al. Core excitons at the boron K edge in hexagonal BN. Phys Rev B, 1981, 24, 3537

[271]

Tegeler E, Kosuch N, Wiech G, et al. On the electronic structure of hexagonal boron nitride. Phys Status Solidi B, 1979, 91, 223

[272]

Zunger A, Katzir A, Halperin A. Optical properties of hexagonal boron nitride. Phys Rev B, 1976, 13, 5560

[273]

Brown F C, Bachrach R Z, Skibowski M. Effect of X-ray polarization at the boron K edge in hexagonal BN. Phys Rev B, 1976, 13, 2633

[274]

Zupan J, Kolar D. Optical properties of graphite and boron nitride. J Phys C Solid State Phys, 1972, 5, 3097

[275]

Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics, 2016, 10, 262

[276]

Laleyan D A, Zhao S, Woo S Y, et al. AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics. Nano Lett, 2017, 17, 3738

[277]

Cadiz F, Courtade E, Robert C, et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys Rev X, 2017, 7, 021026

[278]

Museur L, Brasse G, Pierret A, et al. Exciton optical transitions in a hexagonal boron nitride single crystal. Phys Status Solidi RRL, 2011, 5, 214

[279]

Pierucci D, Zribi J, Henck H, et al. Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: Electronic properties and band structure. Appl Phys Lett, 2018, 112, 253102

[280]

Schubert E F. Light-emitting diodes. Cambridge University Press, 2006

[281]

Kaneko K, Fujita S, Hitora T. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY? technique. Jpn J Appl Phys, 2018, 57, 02CB18

[282]

Fujita S, Oda M, Kaneko K, et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 2016, 55, 1202A3

[283]

Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47, 7311

[284]

Marezio M, Remeika J P. Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2– xFe xO3. J Chem Phys, 1967, 46, 1862

[285]

Leszczynski M, Teisseyre H, Suski T, et al. Lattice parameters of gallium nitride. Appl Phys Lett, 1996, 69, 73

[286]

Zhao J, Zhang X, He J, et al. High internal quantum efficiency of nonpolar a-plane AlGaN-based multiple quantum wells grown on r-plane sapphire substrate. ACS Photonics, 2018, 5, 1903

[287]

Tangi M, Mishra P, Janjua B, et al. Role of quantumconfined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes. J Appl Phys, 2018, 123, 105702

[288]

Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 2017, 80, 106501

[289]

Barto? I, Romanyuk O, Paskova T, et al. Electron band bending and surface sensitivity: X-ray photoelectron spectroscopy of polar GaN surfaces. Surf Sci, 2017, 664, 241

[290]

Jang H W, Lee J H, Lee J L. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition. Appl Phys Lett, 2002, 80, 3955

[291]

Bhat I. Physical properties of gallium nitride and related III–V nitrides. In: Wide Bandgap Semiconductor Power Devices. Woodhead Publishing, 2019, 43

[292]

Yonenaga I, Ohkubo Y, Deura M, et al. Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides. AIP Adv, 2015, 5, 077131

[293]

Yim W M, Paff R J. Thermal expansion of AlN, sapphire, and silicon. J Appl Phys, 1974, 45, 1456

[294]

Maruska H P, Tietjen J J. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett, 1969, 15, 327

[295]

Wright A. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J Appl Phys, 1997, 82, 2833

[296]

Kim K, Lambrecht W R L, Segall B. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys Rev B, 1996, 53, 16310

[297]

Polian A, Grimsditch M, Grzegory I. Elastic constants of gallium nitride. J Appl Phys, 1996, 79, 3343

[298]

Thokala R, Chaudhuri J. Calculated elastic constants of wide band gap semiconductor thin films with a hexagonal crystal structure for stress problems. Thin Solid Films, 1995, 266, 189

[299]

McNeil L E, Grimsditch M, French R H. Vibrational spectroscopy of aluminum nitride. J Am Ceram Soc, 1993, 76, 1132

[300]

Chetverikova I F, Chukichev M V, Rastorguev L N. X-ray phase analysis and elastic properties of gallium nitride. Inorg Mater, 1986, 22, 53

[301]

Rounds R, Sarkar B, Sochacki T, et al. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. J Appl Phys, 2018, 124, 105106

[302]

Ziade E, Yang J, Brummer G, et al. Thickness dependent thermal conductivity of gallium nitride. Appl Phys Lett, 2017, 110, 031903

[303]

Mion C, Muth J F, Preble E A, et al. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Appl Phys Lett, 2006, 89, 092123

[304]

Harafuji K, Tsuchiya T, Kawamura K. Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J Appl Phys, 2004, 96, 2501

[305]

Levinshtein M E, Rumyantsev S L, Shur M S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. John Wiley & Sons, 2001

[306]

Morkoc H, Strite S, Gao G, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys, 1994, 76, 1363

[307]

Berger L I. Semiconductor materials. CRC Press, 1997, 123

[308]

Grzegory I, Krukowski S, Jun J, et al. Stability of indium nitride at N2 pressure up to 20 kbar. AIP Conf Proc, 1994, 309, 565

[309]

Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of AIN. J Phys Chem Solids, 1987, 48, 641

[310]

Barin I, Knacke O, Kubaschewski O. Thermochemical properties of inorganic substances. Springer-Verlag, 1977

[311]

Slack G A, McNelly T F. AlN single crystals. J Cryst Growth, 1977, 42, 560

[312]

Slack G A, McNelly T F. Growth of high purity AlN crystals. J Cryst Growth, 1976, 34, 263

[313]

Slack G A, Bartram S F. Thermal expansion of some diamondlike crystals. J Appl Phys, 1975, 46, 89

[314]

Mezaki R, Tilleux E W, Jambois T F,et al. Specific heat of nonmetallic solids. Plenum Press, 1970

[315]

Tyagai V A, Evstigneev A M, Krasiko A N, et al. Optical properties of indium nitride films. Sov Phys Semicond, 1977, 11, 1257

[316]

Barker A S Jr, Ilegems M. Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B, 1973, 7, 743

[317]

Wagner J M, Bechstedt F. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys Rev B, 2002, 66, 115202

[318]

Krukowski S, Witek A, Adamczyk J, et al. Thermal properties of indium nitride. J Phys Chem Solids, 1998, 59, 289

[319]

Doppalapudi D, Moustakas T D. Epitaxial growth and structure of III–V nitride thin films. In: Handbook of Thin Films. Elsevier, 2002, 57

[320]

You S T, Lo I, Shih H J, et al. Strain of m-plane GaN epitaxial layer grown on β-LiGaO2(100) by plasma-assisted molecular beam epitaxy. AIP Adv, 2018, 8, 075116

[321]

Davies M J, Dawson P, Massabuau F C P, et al. The effects of varying threading dislocation density on the optical properties of InGaN/GaN quantum wells. Phys Status Solidi C, 2014, 11, 750

[322]

Zhang J P, Wang H M, Gaevski M E, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80, 3542

[323]

Dong P, Yan J, Wang J, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett, 2013, 102, 241113

[324]

Bryan Z, Bryan I, Xie J, et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl Phys Lett, 2015, 106, 142107

[325]

Grandusky J R, Smart J A, Mendrick M C, et al. Pseudomorphic growth of thick n-type Al xGa1– xN layers on low-defect-density bulk AlN substrates for UV LED applications. J Cryst Growth, 2009, 311, 2864

[326]

Graham D M, Soltani-Vala A, Dawson P, et al. Optical and microstructural studies of InGaN/GaN single-quantum-well structures. J Appl Phys, 2005, 97, 103508

[327]

Nakamura S, Senoh M, Mukai T. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl Phys Lett, 1993, 62, 2390

[328]

Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p–n diodes on a free-standing GaN substrate. Appl Phys Lett, 2018, 112, 182106

[329]

Ferdous M S, Wang X, Fairchild M N, et al. Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2007, 91, 231107

[330]

Kamiyama S, Iwaya M, Takanami S, et al. UV light-emitting diode fabricated on hetero-ELO-grown Al0.22Ga0.78N with low dislocation density. Phys Status Solidi A, 2002, 192, 296

[331]

Nakamura S. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 1998, 281, 956

[332]

Massabuau F C, Rhode S L, Horton M K, et al. Dislocations in AlGaN: Core structure, atom segregation, and optical properties. Nano Lett, 2017, 17, 4846

[333]

Holec D, Costa P M F J, Kappers M J, et al. Critical thickness calculations for InGaN/GaN. J Cryst Growth, 2007, 303, 314

[334]

Holec D, Zhang Y, Rao D V S, et al. Equilibrium critical thickness for misfit dislocations in III-nitrides. J Appl Phys, 2008, 104, 123514

[335]

Yang X, Nitta S, Nagamatsu K, et al. Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy. J Cryst Growth, 2018, 482, 1

[336]

Creighton J R, Coltrin M E, Figiel J J. Measurement and thermal modeling of sapphire substrate temperature at III–nitride MOVPE conditions. J Cryst Growth, 2017, 464, 132

[337]

Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 2009, 206, 1176

[338]

Weeks T W Jr, Bremser M D, Ailey K S, et al. GaN thin films deposited via organometallic vapor phase epitaxy on α(6H)-SiC(0001) using high-temperature monocrystalline AlN buffer layers. Appl Phys Lett, 1995, 67, 401

[339]

Akasaki I, Amano H, Koide Y, et al. Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1– xAl xN (0 < x ≤ 0.4) films grown on sapphire substrate by MOVPE. J Cryst Growth, 1989, 98, 209

[340]

Matta S, Brault J, Ngo T H, et al. Photoluminescence properties of (Al,Ga)N nanostructures grown on Al0.5Ga0.5N (0001). Superlattices Microstruct, 2018, 114, 161

[341]

Hirayama H, Fujikawa S, Norimatsu J, et al. Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs. Phys Status Solidi C, 2009, 6, S356

[342]

Xu Q, Liu B, Zhang S, et al. Structural and optical properties of AlxGa1–xN (0.33 ≤ x ≤ 0.79) layers on high-temperature AlN interlayer grown by metal organic chemical vapor deposition. Superlattices Microstruct, 2017, 101, 144

[343]

Khan M A, Shatalov M, Maruska H P, et al. III-nitride UV devices. Jpn J Appl Phys, 2005, 44, 7191

[344]

Keller S, DenBaars S P. Metalorganic chemical vapor deposition of group III nitrides — a discussion of critical issues. J Cryst Growth, 2003, 248, 479

[345]

Wu X H, Fini P, Tarsa E J, et al. Dislocation generation in GaN heteroepitaxy. J Cryst Growth, 1998, 189, 231

[346]

Imura M, Nakano K, Fujimoto N, et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys, 2007, 46, 1458

[347]

Narayanan V, Lorenz K, Kim W, et al. Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition. Appl Phys Lett, 2001, 78, 1544

[348]

Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81, 604

[349]

Jiang H, Egawa T, Hao M, et al. Reduction of threading dislocations in AlGaN layers grown on AlN/sapphire templates using high-temperature GaN interlayer. Appl Phys Lett, 2005, 87, 241911

[350]

Tersoff J. Dislocations and strain relief in compositionally graded layers. Appl Phys Lett, 1993, 62, 693

[351]

Ivanov S V, Nechaev D V, Sitnikova A A, et al. Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on c-Al2O3. Semicond Sci Technol, 2014, 29, 084008

[352]

Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev, 2013, 7, 408

[353]

Janjua B, Sun H, Zhao C, et al. Droop-free AlxGa1– xN/AlyGa1– yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. Opt Express, 2017, 25, 1381

[354]

Kim T, Seong T Y, Kwon O. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode. Appl Phys Lett, 2016, 108, 231101

[355]

Jung E, Hwang G, Chung J, et al. Investigating the origin of efficiency droop by profiling the temperature across the multi-quantum well of an operating light-emitting diode. Appl Phys Lett, 2015, 106, 041114

[356]

Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J Appl Phys, 2013, 114, 071101

[357]

Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91, 183507

[358]

Efremov A A, Bochkareva N, Gorbunov R I, et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 2006, 40, 605

[359]

Yang Y, Cao X A, Yan C. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans Electron Devices, 2008, 55, 1771

[360]

Mukai T, Yamada M, Nakamura S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn J Appl Phys, 1999, 38, 3976

[361]

Meng X, Wang L, Hao Z, et al. Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis. Appl Phys Lett, 2016, 108, 013501

[362]

Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett, 2008, 93, 041102

[363]

Meyaard D S, Lin G B, Cho J, et al. Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop. Appl Phys Lett, 2013, 102, 251114

[364]

Bochkareva N I, Rebane Y T, Shreter Y G. Efficiency droop in GaN LEDs at high current densities: Tunneling leakage currents and incomplete lateral carrier localization in InGaN/GaN quantum wells. Semiconductors, 2014, 48, 1079

[365]

Rozhansky I V, Zakheim D A. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density. Semiconductors, 2006, 40, 839

[366]

Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solidi A, 2010, 207, 2217

[367]

Hai X, Rashid R T, Sadaf S M, et al. Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes. Appl Phys Lett, 2019, 114, 101104

[368]

Frost T, Jahangir S, Stark E, et al. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett, 2014, 14, 4535

[369]

Iveland J, Martinelli L, Peretti J, et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys Rev Lett, 2013, 110, 177406

[370]

Wang L, Jin J, Mi C, et al. A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes. Materials, 2017, 10, 1233

[371]

Yoshida H, Kuwabara M, Yamashita Y, et al. Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2010, 96, 211122

[372]

Morko? H. Handbook of nitride semiconductors and devices, materials properties, physics and growth. Vol. 3. John Wiley & Sons, 2009

[373]

Hader J, Moloney J V, Pasenow B, et al. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl Phys Lett, 2008, 92, 261103

[374]

Delaney K T, Rinke P, Van de Walle C G. Auger recombination rates in nitrides from first principles. Appl Phys Lett, 2009, 94, 191109

[375]

Delaney K T, Rinke P, Van de Walle C G. Erratum: " Auger recombination rates in nitrides from first principles” [Appl. Phys. Lett. 94, 191109(2009)]. Appl Phys Lett, 2016, 108, 259901

[376]

Guo W, Zhang M, Bhattacharya P, et al. Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics. Nano Lett, 2011, 11, 1434

[377]

Liu L, Wang L, Liu N, et al. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes. J Appl Phys, 2012, 112, 083101

[378]

Berdahl P. Radiant refrigeration by semiconductor diodes. J Appl Phys, 1985, 58, 1369

[379]

David A, Hurni C A, Young N G, et al. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl Phys Lett, 2016, 109, 083501

[380]

Kibria M G, Qiao R, Yang W, et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv Mater, 2016, 28, 8388

[381]

Yong Y, Jiang H, Li X, et al. The cluster-assembled nanowires based on M12N12(M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection. Phys Chem Chem Phys, 2016, 18, 21431

[382]

Alfaraj N, Muhammed M M, Li K H, et al. Thermodynamic photoinduced disorder in AlGaN nanowires. AIP Adv, 2017, 7, 125113

[383]

Alfaraj N, Mitra S, Wu F, et al. Photoinduced entropy of InGaN/GaN p–i–n double-heterostructure nanowires. Appl Phys Lett, 2017, 110, 161110

[384]

Wang J B, Johnson S, Ding D, et al. Influence of photon recycling on semiconductor luminescence refrigeration. J Appl Phys, 2006, 100, 043502

[385]

Dawson P, Schulz S, Oliver R A, et al. The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells. J Appl Phys, 2016, 119, 181505

[386]

Badcock T J, Dawson P, Davies M J, et al. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells. J Appl Phys, 2014, 115, 113505

[387]

Li C K, Piccardo M, Lu L S, et al. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Phys Rev B, 2017, 95, 144206

[388]

Belloeil M, Gayral B, Daudin B. Quantum dot-like behavior of compositional fluctuations in AlGaN nanowires. Nano Lett, 2016, 16, 960

[389]

Zhao S, Woo S Y, Bugnet M, Liu X., et al Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: A viable route to electrically injected deep ultraviolet lasers. Nano Lett, 2015, 15, 7801

[390]

Mahajan S. Phase separation and atomic ordering in mixed III nitride layers. Scr Mater, 2014, 75, 1

[391]

Li D, Jiang K, Sun X, et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43

[392]

He J, Wang S, Chen J, et al. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer. Nanotechnology, 2018, 29, 195203

[393]

Yoshikawa A, Nagatomi T, Morishita T, et al. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy. Appl Phys Lett, 2017, 111, 162102

[394]

Jiang K, Sun X, Ben J, et al. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. Cryst Eng Comm, 2018, 20, 2720

[395]

Miyoshi M, Ohta M, Mori T, et al. A comparative study of InGaN/GaN multiple-quantum-well solar sells grown on sapphire and AlN template by metalorganic chemical vapor deposition. Phys Status Solidi A, 2018, 215, 1700323

[396]

Yoshida S, Misawa S, Gonda S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl Phys Lett, 1983, 42, 427

[397]

Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48, 353

[398]

Nakamura S, Senoh M, Mukai T. P-GaN/N-InGaN/NGaN double-heterostructure blue-light-emitting diodes. Jpn J Appl Phys, 1993, 32, L8

[399]

Asif Khan M, Kuznia J N, Olson D T, et al. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl Phys Lett, 1994, 65, 1121

[400]

Zhao S, Woo S Y, Sadaf S M, et al. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics. APL Mater, 2016, 4, 086115

[401]

Himwas C, Den Hertog M, Dang L S, et al. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission. Appl Phys Lett, 2014, 105, 241908

[402]

Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2008, 2, 77

[403]

Risti? J, Sánchez-García M, Calleja E, et al. AlGaN nanocolumns grown by molecular beam epitaxy: Optical and structural characterization. Phys Status Solidi A, 2002, 192, 60

[404]

Vuong T Q P, Cassabois G, Valvin P, et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater, 2017, 4, 021023

[405]

Liu X, Zhao S, Le B H, et al. Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes. Appl Phys Lett, 2017, 111, 101103

[406]

SaifAddin B K, Almogbel A, Zollner C, et al. Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC. Semicond Sci Technol, 2019, 43, 035007

[407]

Alias M S, Janjua B, Zhao C, et al. Enhancing the light-extraction efficiency of AlGaN nanowires ultraviolet light-emitting diode by using nitride/air distributed Bragg reflector nanogratings. IEEE Photonics J, 2017, 9, 4900508

[408]

Park J S, Kim J K, Cho J, et al. Review- Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency. ECS J Solid State Sci Technol, 2017, 6, Q42

[409]

Kneissl M, Rass J. III-nitride ultraviolet emitters. In: Springer Series in Materials Science. Vol. 227. Springer, 2016

[410]

Yamada K, Furusawa Y, Nagai S, et al. Development of underfilling and encapsulation for deep-ultraviolet LEDs. Appl Phys Express, 2015, 8, 012101

[411]

Maeda N, Hirayama H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys Status Solidi C, 2013, 10, 1521

[412]

Kim B J, Jung H, Shin J, et al. Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays. Thin Solid Films, 2009, 517, 2742

[413]

Jo M, Maeda N, Hirayama H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent pAlGaN layer. Appl Phys Express, 2016, 9, 012102

[414]

Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN. Appl Phys Lett, 2013, 102, 012105

[415]

Kozodoy P, Xing H, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87, 1832

[416]

Chen Y, Wu H, Han E, et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl Phys Lett, 2015, 106, 162102

[417]

Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl Phys Lett, 2011, 99, 112110

[418]

Kauser M Z, Osinsky A, Dabiran A M, et al. Enhanced vertical transport in p-type AlGaN/GaN superlattices. Appl Phys Lett, 2004, 85, 5275

[419]

Luo W, Liu B, Li Z, et al. Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy. Appl Phys Lett, 2018, 113, 072107

[420]

Detchprohm T, Liu Y S, Mehta K, et al. Sub 250 nm deep-UV AlGaN/AlN distributed Bragg reflectors. Appl Phys Lett, 2017, 110, 011105

[421]

Alias M S, Alatawi A A, Chong W K, et al. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime. IEEE Photonics J, 2018, 10, 2200508

[422]

Majety S, Li J, Cao X K, et al. Epitaxial growth and demonstration of hexagonal BN/AlGaN p–n junctions for deep ultraviolet photonics. Appl Phys Lett, 2012, 100, 061121

[423]

Dahal R, Li J, Majety S, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl Phys Lett, 2011, 98, 211110

[424]

He B, Zhang W J, Yao Z Q, et al. p-type conduction in beryllium-implanted hexagonal boron nitride films. Appl Phys Lett, 2009, 95, 252106

[425]

Nose K, Oba H, Yoshida T. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc. Appl Phys Lett, 2006, 89, 112124

[426]

Lu M, Bousetta A, Bensaoula A, et al. Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition. Appl Phys Lett, 1996, 68, 622

[427]

Nakarmi M L, Kim K H, Khizar M, et al. Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl Phys Lett, 2005, 86, 092108

[428]

Yan Q, Janotti A, Scheffler M, et al. Origins of optical absorption and emission lines in AlN. Appl Phys Lett, 2014, 105, 111104

[429]

Takeuchi M, Ooishi S, Ohtsuka T, et al. Improvement of Al-polar AlN layer quality by three-stage flow-modulation metalorganic chemical vapor deposition. Appl Phys Express, 2008, 1, 021102

[430]

Takeuchi M, Shimizu H, Kajitani R, et al. Al- and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD. J Cryst Growth, 2007, 305, 360

[431]

Kikkawa J, Nakamura Y, Fujinoki N, et al. Investigating the origin of intense photoluminescence in Si capping layer on Ge1– xSnx nanodots by transmission electron microscopy. J Appl Phys, 2013, 113, 074302

[432]

Huang C Y, Wu P Y, Chang K S, et al. High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultraviolet light-emitting diodes. AIP Adv, 2017, 7, 055110

[433]

Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl Phys Express, 2016, 9, 025501

[434]

Miyake H, Lin C H, Tokoro K, et al. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J Cryst Growth, 2016, 456, 155

[435]

Iriarte G F. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering. J Vac Sci Technol, 2010, 28, 193

[436]

Ide K, Matsubara Y, Iwaya M, et al. Microstructure analysis of AlGaN on AlN underlying layers with different threading dislocation densities. Jpn J Appl Phys, 2013, 52, 08JE22

[437]

Nonaka K, Asai T, Ban K, et al. Microstructural analysis of thick AlGaN epilayers using Mg-doped AlN underlying layer. Phys Status Solidi C, 2011, 8, 1467

[438]

Asai T, Nonaka K, Ban K, et al. Growth of low-dislocation-density AlGaN using Mg-doped AlN underlying layer. Phys Status Solidi C, 2010, 7, 2101

[439]

Sun H, Wu F, Al Tahtamouni T M, et al. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate. J Phys D, 2017, 50, 395101

[440]

Hussey L, White R M, Kirste R, et al. Sapphire decomposition and inversion domains in N-polar aluminum nitride. Appl Phys Lett, 2014, 104, 032104

[441]

Wong M H, Wu F, Speck J S, et al. Polarity inversion of N-face GaN using an aluminum oxide interlayer. J Appl Phys, 2010, 108, 123710

[442]

Lim D H, Xu K, Arima S, et al. Polarity inversion of GaN films by trimethyl-aluminum preflow in low-pressure metalorganic vapor phase epitaxy growth. J Appl Phys, 2002, 91, 6461

[443]

Eom D, Kim J, Lee K, et al. Fabrication of AlN nano-structures using polarity control by high temperature metalorganic chemical vapor deposition. J Nanosci Nanotechnol, 2015, 15, 5144

[444]

Liu X, Sun C, Xiong B, et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Opt Express, 2017, 25, 587

[445]

Lee D, Lee J W, Jang J, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nanopatterned AlN/sapphire substrates. Appl Phys Lett, 2017, 110, 191103

[446]

Zhou S, Hu H, Liu X, et al. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer. Jpn J Appl Phys, 2017, 56, 111001

[447]

Wang S, Dai J, Hu J, et al. Ultrahigh degree of optical polarization above 80% in AlGaN-based deep-ultraviolet LED with moth-eye microstructure. ACS Photonics, 2018, 5, 3534

[448]

Shen X Q, Takahashi T, Ide T, et al. High quality thin AlN epilayers grown on Si(110) substrates by metalorganic chemical vapor deposition. CrystEngComm, 2017, 19, 1204

[449]

Tran B T, Maeda N, Jo M, et al. Performance improvement of AlN crystal quality grown on patterned Si(111) substrate for deep UV-LED applications. Sci Rep, 2016, 6, 35681

[450]

Ooi Y K, Zhang J. Light extraction efficiency analysis of flip-chip ultraviolet light-emitting diodes with patterned sapphire substrate. IEEE Photonics J, 2018, 10, 8200913

[451]

Bhattacharyya A, Moustakas T D, Zhou L, et al. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl Phys Lett, 2009, 94, 181907

[452]

Susilo N, Enslin J, Sulmoni L, et al. Effect of the GaN:Mg contact layer on the light-output and current-voltage characteristic of UVB LEDs. Phys Status Solidi A, 2018, 215, 1700643

[453]

Akaike R, Ichikawa S, Funato M, et al. Al xGa1– xN-based semipolar deep ultraviolet light-emitting diodes. Appl Phys Express, 2018, 11, 061001

[454]

Liu X, Mashooq K, Szkopek T, et al. Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal. IEEE Photonics J, 2018, 10, 4501211

[455]

Liu D, Cho S J, Park J, et al. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection. Appl Phys Lett, 2018, 112, 081101

[456]

Liu C, Ooi Y K, Islam S M, et al. 234 nm and 246 nm AlN-delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl Phys Lett, 2018, 112, 011101

[457]

Inoue S i, Tamari N, Taniguchi M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl Phys Lett, 2017, 110, 141106

[458]

Sarwar A T M G, May B J, et al. Effect of quantum well shape and width on deep ultraviolet emission in AlGaN nanowire LEDs. Phys Status Solidi A, 2016, 213, 947

[459]

Kent T F, Carnevale S D, Sarwar A, et al. Deep ultraviolet emitting polarization induced nanowire light emitting diodes with Al xGa1– xN active regions. Nanotechnology, 2014, 25, 455201

[460]

Moustakas T D, Liao Y, Kao C K, et al. Deep UV-LEDs with high IQE based on AlGaN alloys with strong band structure potential fluctuations. In: Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVI. Vol. 8278. 2012, 82780L

[461]

Liao Y, Thomidis C, Kao C K. et al AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Appl Phys Lett, 2011, 98, 081110

[462]

Cabalu J S, Bhattacharyya A, Thomidis C, et al. High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy. J Appl Phys, 2006, 100, 104506

[463]

Molnar R J, Lei T, Moustakas T D. Electron transport mechanism in gallium nitride. Appl Phys Lett, 1993, 62, 72

[464]

Mu?oz E, Monroy E, Calle F, et al. AlGaN photodiodes for monitoring solar UV radiation. J Geophys Res Atmos, 2000, 105, 4865

[465]

Monroy E, Calle F, Pau J, et al. AlGaN-based UV photodetectors. J Cryst Growth, 2001, 230, 537

[466]

Chowdhury U, Wong M M, Collins C J, et al . High-performance solar-blind photodetector using an Al0.6Ga0.4N n-type window layer. J Cryst Growth, 2003, 248, 552

[467]

Asgari A, Ahmadi E, Kalafi M. Al xGa1– xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures. Microelectron J, 2009, 40, 104

[468]

Larason T, Ohno Y. Calibration and characterization of UV sensors for water disinfection. Metrologia, 2006, 43, S151

[469]

Oubei H M, Shen C, Kammoun A, et al. Light based underwater wireless communications. Jpn J Appl Phys, 2018, 57, 08PA06

[470]

Werner M R, Fahrner W R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans Ind Electron, 2001, 48, 249

[471]

Neuberger R, Müller G, Ambacher O, et al. High-electron-mobility AlGaN/GaN Transistors (HEMTs) for fluid monitoring applications. Phys Status Solidi A, 2001, 185, 85

[472]

Miller R A, So H, Chiamori H C, et al. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays. Rev Sci Instrum, 2016, 87, 095003

[473]

Alheadary W G, Park K H, Alfaraj N, et al. Free-space optical channel characterization and experimental validation in a coastal environment. Opt Express, 2018, 26, 6614

[474]

de Graaf G, Wolffenbuttel R F. Illumination source identification using a CMOS optical microsystem. IEEE Trans Instrum Meas, 2004, 53, 238

[475]

Ji M H, Kim J, Detchprohm T, et al. p–i–p–i–n separate absorption and multiplication ultraviolet avalanche photodiodes. IEEE Photonics Technol Lett, 2018, 30, 181

[476]

Zheng J, Wang L, Wu X, et al. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl Phys Lett, 2016, 109, 241105

[477]

Li J, Fan Z Y, Dahal R, et al. 200 nm deep ultraviolet photodetectors based on AlN. Appl Phys Lett, 2006, 89, 213510

[478]

Khan M A, Kuznia J N, Olson D T, et al. High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl Phys Lett, 1992, 60, 2917

[479]

Tut T, Biyikli N, Kimukin I, et al. High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current. SolidState Electron, 2005, 49, 117

[480]

Biyikli N, Kimukin I, Kartaloglu T, et al. High-speed solar-blind AlGaN-based metal-semiconductor- metal photodetectors. Phys Status Solidi C, 2003, 0, 2314

[481]

Biyikli N, Aytur O, Kimukin I, et al. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl Phys Lett, 2002, 81, 3272

[482]

Pandit B, Cho J. Metal-semiconductor-metal ultraviolet photodiodes based on reduced graphene oxide/GaN Schottky contacts. Thin Solid Films, 2018, 660, 824

[483]

Brendel M, Brunner F, Weyers M. On the EQE-bias characteristics of bottom-illuminated AlGaN-based metal–semiconductor–metal photodetectors with asymmetric electrode geometry. J Appl Phys, 2017, 122, 174501

[484]

Brendel M, Helbling M, Knauer A, et al. Top- and bottom-illumination of solar-blind AlGaN metal-semiconductor-metal photodetectors. Phys Status Solidi A, 2015, 212, 1021

[485]

Brendel M, Helbling M, Knigge A, et al. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal–semiconductor–metal photodetectors with high external quantum efficiencies. J Appl Phys, 2015, 118, 244504

[486]

Butun S, Tut T, Butun B, et al. Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength. Appl Phys Lett, 2006, 88, 123503

[487]

Narita T, Wakejima A, Egawa T. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn J Appl Phys, 2013, 52, 01AG06

[488]

Tut T, Yelboga T, Ulker E, et al. Solar-blind AlGaN-based p–i–n photodetectors with high breakdown voltage and detectivity. Appl Phys Lett, 2008, 92, 103502

[489]

Teke A, Dogan S, He L, et al. p-GaN-i-GaN/AlGaN multiple-quantum well n-AlGaN back-illuminated ultraviolet detectors. J Electron Mater, 2003, 32, 307

[490]

Collins C J, Chowdhury U, Wong M M, et al. Improved solar-blind detectivity using an Al xGa1– xN heterojunction p–i–n photodiode. Appl Phys Lett, 2002, 80, 3754

[491]

Wong M M, Chowdhury U, Collins C J, et al. High quantum efficiency AlGaN/GaN solar-blind photodetectors grown by metalorganic chemical vapor deposition. Phys Status Solidi A, 2001, 188, 333

[492]

Biyikli N, Kimukin I, Kartaloglu T, et al. High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts. Appl Phys Lett, 2003, 82, 2344

[493]

Averin S V, Kuznetzov P I, Zhitov V A, et al. Solar-blind MSM-photodetectors based on Al xGa1– xN heterostructures. Opt Quant Electron, 2007, 39, 181

[494]

Wang G, Xie F, Lu H, et al. Performance comparison of front-and back-illuminated AlGaN-based metal–semiconductor–metal solar-blind ultraviolet photodetectors. J Vac Sci Technol B, 2013, 31, 011202

[495]

H?iaas I M, Liudi Mulyo A, Vullum P E, et al. GaN/AlGaN nanocolumn ultraviolet LED using double-layer graphene as substrate and transparent electrode. Nano Lett, 2019, 19, 1649

[496]

Fernández-Garrido S, Ramsteiner M, Gao G, et al. Molecular beam epitaxy of GaN nanowires on epitaxial graphene. Nano Lett, 2017, 17, 5213

[497]

Tonkikh A A, Tsebro V I, Obraztsova E A, et al. Films of filled singlewall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range. Nanoscale, 2019, 11, 6755

[498]

Boulanger N, Barbero D R. Nanostructured networks of single wall carbon nanotubes for highly transparent, conductive, and anti-reflective flexible electrodes. Appl Phys Lett, 2013, 103, 021116

[499]

Borges B G A L, Holakoei S, das Neves M F F, et al. Molecular orientation and femtosecond charge transfer dynamics in transparent and conductive electrodes based on graphene oxide and PEDOT:PSS composites. Phys Chem Chem Phys, 2019, 21, 736

[500]

Yan X, Ma J, Xu H, et al. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. J Phys D, 2016, 49, 325103

[501]

Brendel M, Knigge A, Brunner F, et al. Anisotropic responsivity of AlGaN metal-semiconductor-metal photodetectors on epitaxial laterally overgrown AlN/sapphire templates. J Electron Mater, 2014, 43, 833

[502]

Schlegel J, Brendel M, Martens M, et al. Influence of carrier lifetime, transit time, and operation voltages on the photoresponse of visible-blind AlGaN metal–semiconductor–metal photodetectors. Jpn J Appl Phys, 2013, 52, 08JF01

[503]

Rathkanthiwar S, Kalra A, Muralidharan R, et al. Analysis of screw dislocation mediated dark current in Al0.50Ga0.50N solar-blind metal-semiconductor-metal photodetectors. J Cryst Growth, 2018, 498, 35

[504]

Liu H Y, Wang Y H, Hsu W C. Suppression of dark current on AlGaN/GaN metal-semiconductor-metal photodetectors. IEEE Sens J, 2015, 15, 5202

[505]

Li D, Sun X, Song H, et al. Influence of threading dislocations on GaN-based metal–semiconductor–metal ultraviolet photodetectors. Appl Phys Lett, 2011, 98, 011108

[506]

Walde S, Brendel M, Zeimer U, et al. Impact of open-core threading dislocations on the performance of AlGaN metal-semiconductor-metal photodetectors. J Appl Phys, 2018, 123, 161551

[507]

Yoshikawa A, Ushida S, Nagase K, et al. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl Phys Lett, 2017, 111, 191103

[508]

Kang S, Nandi R, Kim H, et al. Synthesis of n-AlGaN nanoflowers by MOCVD for high-performance ultraviolet-C photodetectors. J Mater Chem C, 2018, 6, 1176

[509]

Cicek E, McClintock R, Vashaei Z, et al. Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl Phys Lett, 2013, 102, 051102

[510]

Cicek E, Vashaei Z, Huang E Kw, et al. Al xGa1– xN-based deep-ultraviolet 320 × 256 focal plane array. Opt Lett, 2012, 37, 896

[511]

Cicek E, McClintock R, Cho C Y, et al. AlxGa1–xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Appl Phys Lett, 2013, 103, 191108

[512]

Adivarahan V, Simin G, Tamulaitis G, et al. Indium-silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett, 2001, 79, 1903

[513]

Han W Y, Zhang Z W, Li Z M, et al. High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. J Mater Sci Mater Electron, 2018, 29, 9077

[514]

Chen Y, Zhang Z, Jiang H, et al. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J Mater Chem C, 2018, 6, 4936

[515]

Albrecht B, Kopta S, John O, et al. Improved AlGaN p–i–n photodetectors for monitoring of ultraviolet radiation. IEEE J Sel Top Quantum Electron, 2014, 20, 3802507

[516]

Ozbay E, Biyikli N, Kimukin I, et al. High-performance solar-blind photodetectors based on AlxGa1– xN heterostructures. IEEE J Sel Top Quantum Electron, 2004, 10, 742

[517]

Muhtadi S, Hwang S M, Coleman A L, et al. High-speed solar-blind UV photodetectors using high-Al content Al0.64Ga0.36N/ Al0.34Ga0.66N multiple quantum wells. Appl Phys Express, 2017, 10, 011004

[518]

Babichev A V, Zhang H, Lavenus P, et al. GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl Phys Lett, 2013, 103, 201103

[519]

Kang S, Chatterjee U, Um D Y, et al. Ultraviolet-C photodetector fabricated using Si-doped n-AlGaN nanorods grown by MOCVD. ACS Photonics, 2017, 4, 2595

[520]

Zou Y, Zhang Y, Hu Y, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors, 2018, 18, 2072

[521]

Cai Q, Luo W K, Li Q, et al. AlGaN ultraviolet avalanche photodiodes based on a triple-mesa structure. Appl Phys Lett, 2018, 113, 123503

[522]

Shao Z G, Chen D J, Lu H, et al. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett, 2014, 35, 372

[523]

Bellotti E, Bertazzi F, Shishehchi S, et al. Theory of carriers transport in III-nitride materials: State of the art and future outlook. IEEE Trans Electron Devices, 2013, 60, 3204

[524]

Huang Z, Li J, Zhang W, et al. AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl Phys Express, 2013, 6, 054101

[525]

Huang Y, Chen D J, Lu H, et al. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl Phys Lett, 2012, 101, 253516

[526]

Sun L, Chen J, Li J, et al. AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl Phys Lett, 2010, 97, 191103

[527]

Dahal R, Al Tahtamouni T M, Lin J Y,et al. AlN avalanche photodetectors. Appl Phys Lett, 2007, 91, 243503

[528]

Dahal R, Al Tahtamouni T M, Fan Z Y, et al. Hybrid AlN-SiC deep ultraviolet Schottky barrier photodetectors. Appl Phys Lett, 2007, 90, 263505

[529]

McClintock R, Yasan A, Minder K, et al. Avalanche multiplication in AlGaN based solar-blind photodetectors. Appl Phys Lett, 2005, 87, 241123

[530]

Nikzad S, Hoenk M, Jewell A, et al. Single photon counting UV solar-blind detectors using silicon and III–nitride materials. Sensors, 2016, 16, 927

[531]

Pau J L, McClintock R, Minder K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 2007, 91, 041104

[532]

Kim J, Ji M H, Detchprohm T, et al. Comparison of AlGaN p–i–n ultraviolet avalanche photodiodes grown on free-standing GaN and sapphire substrates. Appl Phys Express, 2015, 8, 122202

[533]

Wu H, Wu W, Zhang H, et al. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl Phys Express, 2016, 9, 052103

[534]

Hahn L, Fuchs F, Kirste L, et al. Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range. Appl Phys Lett, 2018, 112, 151102

[535]

Shao Z, Chen D, Liu Y, et al. Significant performance improvement in AlGaN solar-blind avalanche photodiodes by exploiting the built-in polarization electric field. IEEE J Sel Top Quantum Electron, 2014, 20, 3803306

[536]

Walker D, Kumar V, Mi K, et al. Solar-blind AlGaN photodiodes with very low cutoff wavelength. Appl Phys Lett, 2000, 76, 403

[537]

G?kkavas M, Butun S, Tut T, et al. AlGaN-based high-performance metal-semiconductor-metal photodetectors. Photonics Nanostruct: Fundam Appl, 2007, 5, 53

[538]

Izyumskaya N, Demchenko D O, Das S, et al. Recent development of boron nitride towards electronic applications. Adv Electron Mater, 2017, 3, 1600485

[539]

Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol, 2003, 18, R33

[540]

Munoz E, Monroy E, Pau J, et al. III nitrides and UV detection. J Phys Condens Matter, 2001, 13, 7115

[541]

Rodak L, Sampath A, Gallinat C, et al. Solar-blind AlxGa1– xN/ AlN/SiC photodiodes with a polarization-induced electron filter. Appl Phys Lett, 2013, 103, 071110

[542]

Spies M, Den Hertog M I, Hille P, et al. Bias-controlled spectral response in GaN/AlN single-nanowire ultraviolet photodetectors. Nano Lett, 2017, 17, 4231

[543]

Nikishin S, Borisov B, Pandikunta M, et al. High quality AlN for deep UV photodetectors. Appl Phys Lett, 2009, 95, 054101

[544]

Barkad H A, Soltani A, Mattalah M, et al. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes. J Phys D, 2010, 43, 465104

[545]

Laksana C P, Chen M R, Liang Y, et al. Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58, 1688

[546]

Soltani A, Barkad H, Mattalah M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors. Appl Phys Lett, 2008, 92, 053501

[547]

Li J, Majety S, Dahal R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl Phys Lett, 2012, 101, 171112

[548]

Yang N, Zeng X, Lu J, et al. Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl Phys Lett, 2018, 113, 171904

[549]

Sajjad M, Jadwisienczak W M, Feng P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale, 2014, 6, 4577

[550]

Liu H, Meng J, Zhang X, et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 2018, 10, 5559

[551]

Alfaraj N, Li K H, Kang C H, et al. Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition. Conference on Lasers and Electro–Optics, 2019

[552]

Tian H, Liu Q, Hu A, et al. Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt Express, 2018, 26, 5408

[553]

Tian H, Liu Q, Zhou C, et al. Hybrid graphene/unintentionally doped GaN ultraviolet photodetector with high responsivity and speed. Appl Phys Lett, 2018, 113, 121109

[554]

Seo T H, Lee K J, Park A H, et al. Enhanced light output power of near UV light emitting diodes with graphene/indium tin oxide nanodot nodes for transparent and current spreading electrode. Opt Express, 2011, 19, 23111

[555]

Li K H, Alfaraj N, Kang C H, et al. Deep-ultraviolet β-Ga2O3 photodetectors grown on MgO substrates with a TiN template. 2019 IEEE Photonics Conference (IPC), San Antonio, TX, United States, 2019

[556]

Qian L X, Liu H Y, Zhang H F, et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency. Appl Phys Lett, 2019, 114, 113506

[557]

Xu Y, An Z, Zhang L, et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Express, 2018, 8, 2941

[558]

Rathkanthiwar S, Kalra A, Solanke S V, et al. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J Appl Phys, 2017, 121, 164502

[559]

Zhuo R, Zeng L, Yuan H, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res, 2019, 12, 183

[560]

Zhuo R, Wang Y, Wu D, et al. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. J Mater Chem C, 2018, 6, 299

[561]

He T, Zhao Y, Zhang X, et al. Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction. Nanophotonics, 2018, 7, 1557

[562]

Lin R, Zheng W, Zhang D, et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl Mater Interfaces, 2018, 10, 22419

[563]

Lu Y, Wu Z, Xu W, et al. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity. Nanotechnology, 2016, 27, 48LT03

[564]

Ai M, Guo D, Qu Y, et al. Fast-response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure. J Alloys Compd, 2017, 692, 634

[565]

Kumar M, Jeong H, Polat K, et al. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector. J Phys D , 2016, 49, 275105

[566]

Martens M, Mehnke F, Kuhn C, et al. Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates. IEEE Photonics Technol Lett, 2014, 26, 342

[567]

Xie J, Mita S, Bryan Z, et al. Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures. Appl Phys Lett, 2013, 102, 171102

[568]

Wunderer T, Chua C, Northrup J, et al. Optically pumped UV lasers grown on bulk AlN substrates. Phys Status Solidi C, 2012, 9, 822

[569]

Jmerik V N, Mizerov A M, Shubina T V, et al. Optically pumped lasing at 300.4 nm in AlGaN MQW structures grown by plasmaassisted molecular beam epitaxy on c-Al2O3. Phys Status Solidi A, 2010, 207, 1313

[570]

Takano T, Narita Y, Horiuchi A, et al. Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Appl Phys Lett, 2004, 84, 3567

[571]

Martens M, Kuhn C, Simoneit T, et al. The effects of magnesium doping on the modal loss in AlGaN-based deep UV lasers. Appl Phys Lett, 2017, 110, 081103

[572]

Pecora E F, Sun H, Dal Negro L, et al. Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Opt Mater Express, 2015, 5, 809

[573]

Zhu H, Shan C X, Li B H, et al. Low-threshold electrically pumped ultraviolet laser diode. J Mater Chem, 2011, 21, 2848

[574]

Yoshida H, Yamashita Y, Kuwabara M, et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat Photonics, 2008, 2, 551

[575]

Sellés J, Brimont C, Cassabois G, et al. Deep-UV nitride-on-silicon microdisk lasers. Sci Rep, 2016, 6, 21650

[576]

Zhao S, Mi Z. AlGaN nanowires: Path to electrically injected semiconductor deep ultraviolet lasers. IEEE J Quantum Electron, 2018, 54, 2001009

[577]

Zhao S, Liu X, Wu Y, et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature. Appl Phys Lett, 2016, 109, 191106

[578]

Zhao S, Liu X, Woo S, et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl Phys Lett, 2015, 107, 043101

[579]

Pan R, Retzer U, Werblinski T, et al. Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system. Opt Lett, 2018, 43, 1191

[580]

Higase Y, Morita S, Fujii T, et al. High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide. Opt Lett, 2018, 43, 1714

[581]

Yamamoto H, Oyamada T, Sasabe H, et al. Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl Phys Lett, 2004, 84, 1401

[582]

Tsutsumi N, Kawahira T, Sakai W. Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Appl Phys Lett, 2003, 83, 2533

[583]

Kogelnik H, Shank C V. Stimulated emission in a periodic structure. Appl Phys Lett, 1971, 18, 152

[584]

Lochner Z, Kao T T, Liu Y S, et al. Deep-ultraviolet lasing at 243 nm from photo-pumped AlGaN/AlN heterostructure on AlN substrate. Appl Phys Lett, 2013, 102, 101110

[585]

Kao T T, Liu Y S, Satter M M, et al. Sub-250 nm low-threshold deep-ultraviolet AlGaN-based heterostructure laser employing HfO2/SiO2 dielectric mirrors. Appl Phys Lett, 2013, 103, 211103

[586]

Shatalov M, Gaevski M, Adivarahan V, et al. Room-temperature stimulated emission from AlN at 214 nm. J Appl Phys, 2006, 45, L1286

[587]

Klein T, Klembt S, Kozlovsky V, et al. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors. J Appl Phys, 2015, 117, 113106

[588]

Oto T, Banal R G, Kataoka K, et al. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat Photonics, 2010, 4, 767

[589]

Demir I, Li H, Robin Y, et al. Sandwich method to grow high quality AlN by MOCVD. J Phys D, 2018, 51, 085104

[590]

Tran B T, Hirayama H, Jo M, et al. High-quality AlN template grown on a patterned Si(111) substrate. J Cryst Growth, 2017, 468, 225

[591]

Kataoka K, Funato M, Kawakami Y. Development of polychromatic ultraviolet light-emitting diodes based on three-dimensional AlGaN quantum wells. Appl Phys Express, 2017, 10, 121001

[592]

Kataoka K, Funato M, Kawakami Y. Deep-ultraviolet polychromatic emission from three-dimensionally structured AlGaN quantum wells. Appl Phys Express, 2017, 10, 031001

[593]

Funato M, Hayashi K, Ueda M, et al. Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells. Appl Phys Lett, 2008, 93, 021126

[594]

Kaneda M, Pernot C, Nagasawa Y, et al. Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn J Appl Phys, 2017, 56, 061002

[595]

Pernot C, Fukahori S, Inazu T, et al. Development of high efficiency 255–355 nm AlGaN-based light-emitting diodes. Phys Status Solidi A, 2011, 208, 1594

[596]

Pernot C, Kim M, Fukahori S, et al. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl Phys Express, 2010, 3, 061004

[597]

Nagamatsu K, Okada N, Sugimura H, et al. High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. J Cryst Growth, 2008, 310, 2326

[598]

Harada T, Oda Y, Motohisa J, et al. Novel nanofaceting structures grown on patterned vicinal (110) GaAs substrates by metal-organic vapor phase epitaxy (MOVPE). Jpn J Appl Phys, 2000, 39, 7090

[599]

Oda Y, Fukui T. Natural formation of multiatomic steps on patterned vicinal substrates by MOVPE and application to GaAs QWR structures. J Cryst Growth, 1998, 195, 6

[600]

Susilo N, Hagedorn S, Jaeger D, et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 2018, 112, 041110

[601]

He C, Zhao W, Wu H, et al. High-quality AlN film grown on sputtered AlN/sapphire via growth-mode modification. Cryst Growth Des, 2018, 18, 6816

[602]

Xiao S, Suzuki R, Miyake H, et al. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 2018, 502, 41

[603]

Zhao L, Yang K, Ai Y, et al. Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing. J Mater Sci Mater Electron, 2018, 29, 13766

[604]

Ben J, Sun X, Jia Y, et al. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. Cryst Eng Comm, 2018, 20, 4623

[605]

Zhao L, Zhang S, Zhang Y, et al. AlGaN-based ultraviolet light-emitting diodes on sputter-deposited AlN templates with epitaxial AlN/AlGaN superlattices. Superlattices Microstruct, 2018, 113, 713

[606]

Oh J T, Moon Y T, Kang D S, et al. High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer. Opt Express, 2018, 26, 5111

[607]

He C, Zhao W, Zhang K, et al. High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates. ACS Appl Mater Interfaces, 2017, 9, 43386

[608]

Chen Z, Zhang J, Xu S, et al. Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AlN nucleation layer. Mater Res Bull, 2017, 89, 193

[609]

Chen Z, Zhang J, Xu S, et al. Effect of AlN interlayer on the impurity incorporation of GaN film grown on sputtered AlN. J Alloys Compd, 2017, 710, 756

[610]

Zhang L, Xu F, Wang M, et al. High-quality AlN epitaxy on sapphire substrates with sputtered buffer layers. Superlattices Microstruct, 2017, 105, 34

[611]

Yoshizawa R, Miyake H, Hiramatsu K. Effect of thermal annealing on AlN films grown on sputtered AlN templates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2017, 57, 01AD05

[612]

Funato M, Shibaoka M, Kawakami Y. Heteroepitaxy mechanisms of AlN on nitridated c-and a-plane sapphire substrates. J Appl Phys, 2017, 121, 085304

[613]

Okada N, Kato N, Sato S, et al. Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification. J Cryst Growth, 2007, 298, 349

[614]

Chang H, Chen Z, Li W, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 2019, 114, 091107

[615]

Zhang L, Li X, Shao Y, Yu J, et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS Appl Mater Interfaces, 2015, 7, 4504

[616]

Kim J, Bayram C, Park H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat Commun, 2014, 5, 4836

[617]

Han N, Cuong T V, Han M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun, 2013, 4, 1452

[618]

Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 1952, 74, 719

[619]

Han S H, Mauze A, Ahmadi E, et al. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 2018, 33, 045001

[620]

Sasaki K, Kuramata A, Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5, 035502

[621]

Shimamura K, Víllora E G, Domen K, et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 2005, 44, L7

[622]

Víllora E G, Shimamura K, Aoki K, et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 2006, 500, 209

[623]

Ohira S, Suzuki N, Minami H, et al. Growth of hexagonal GaN films on the nitridated β-Ga2O3 substrates using RF-MBE. Phys Status Solidi C, 2007, 4, 2306

[624]

Kachel K, Korytov M, Gogova D, et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. Cryst Eng Comm, 2012, 14, 8536

[625]

Ito S, Takeda K, Nagata K, et al. Growth of GaN and AlGaN on (100) β-Ga2O3 substrates. Phys Status Solidi C, 2012, 9, 519

[626]

Ajia I A, Yamashita Y, Lorenz K, et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 2018, 113, 082102

[627]

Yamada K, Nagasawa Y, Nagai S, et al. Study on the main-chain structure of amorphous fluorine resins for encapsulating AlGaN-based DUV-LEDs. Phys Status Solidi A, 2018, 215, 1700525

[628]

Nagai S, Yamada K, Hirano A, et al. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study. Jpn J Appl Phys, 2016, 55, 082101

[629]

Liang R, Dai J, Xu L, et al. Interface anchored effect on improving working stability of deep ultraviolet light-emitting diode using graphene oxide-based fluoropolymer encapsulant. ACS Appl Mater Interfaces, 2018, 10, 8238

[630]

Shen K C, Ku C T, Hsieh C, et al. Deep-ultraviolet hyperbolic metacavity laser. Adv Mater, 2018, 30, 1706918

[631]

Shen K C, Hsieh C, Cheng Y J, et al. Giant enhancement of emission efficiency and light directivity by using hyperbolic metacavity on deep-ultraviolet AlGaN emitter. Nano Energy, 2018, 45, 353

[632]

Tangi M, Mishra P, Tseng C C, et al. Band alignment at GaN/single-layer WSe2 interface. ACS Appl Mater Interfaces, 2017, 9, 9110

[633]

Mishra P, Tangi M, Ng T K, et al. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Appl Phys Lett, 2017, 110, 012101

[634]

Zhao C, Ng T K, Tseng C C, et al. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv, 2017, 7, 26665

[635]

Tangi M, Mishra P, Li M Y, et al. Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Appl Phys Lett, 2017, 111, 092104

[636]

Tangi M, Mishra P, Ng T K, et al. Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl Phys Lett, 2016, 109, 032104

[637]

Gupta P, Rahman A, Subramanian S, et al. Layered transition metal dichalcogenides: Promising near-lattice-matched substrates for GaN growth. Sci Rep, 2016, 6, 23708

[638]

Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8, 497

[639]

Yin Z, Li H, Li H, Jiang L, et al. Single-layer MoS2 phototransistors. ACS Nano, 2011, 6, 74

[640]

Saigal N, Wielert I, ?apeta D, et al. Effect of lithium doping on the optical properties of monolayer MoS2. Appl Phys Lett, 2018, 112, 121902

[641]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10, 1271

[642]

Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105, 136805

[643]

Bharathi N D, Sivasankaran K. Research progress and challenges of two dimensional MoS2 field effect transistors. J Semicond, 2018, 39, 104002

[644]

Pak Y, Kim Y, Lim N, et al. Scalable integration of periodically aligned 2D-MoS2 nanoribbon array. APL Mater, 2018, 6, 076102

[645]

Huang C Y, Chang C, Lu G Z, et al. Hybrid 2D/3D MoS2/GaN heterostructures for dual functional photoresponse. Appl Phys Lett, 2018, 112, 233106

[646]

Grisafe B, Zhao R, Ghosh R K, et al. Electrically triggered insulator-to-metal phase transition in two-dimensional (2D) heterostructures. Appl Phys Lett, 2018, 113, 142101

[647]

Ahmad M, Varandani D, Mehta B R. Large surface charge accumulation in 2D MoS2/Sb2Te3 junction and its effect on junction properties: KPFM based study. Appl Phys Lett, 2018, 113, 141603

[648]

Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotech, 2013, 8, 826

[649]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7, 699

[650]

Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910

[651]

Zhao C, Ng T K, ElAfandy R T, et al. Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Lett, 2016, 16, 4616

[652]

Li L, Zhang Y, Xu S, et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes. Materials, 2017, 10, 1221

[653]

Tangi M, Kuyyalil J, Shivaprasad S M. Optical bandgap and near surface band bending in degenerate InN films grown by molecular beam epitaxy. J Appl Phys, 2013, 114, 153501

[654]

Kuyyalil J, Tangi M, Shivaprasad S. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN. J Appl Phys, 2012, 112, 083521

[655]

Roul B, Kumar M, Rajpalke M K, et al. Binary group III-nitride based heterostructures: band offsets and transport properties. J Phys D, 2015, 48, 423001

[656]

Zubair A, Nourbakhsh A, Hong J Y, et al. Hot electron transistor with van der Waals base-collector heterojunction and highperformance GaN emitter. Nano Lett, 2017, 17, 3089

[657]

Liu J, Kobayashi A, Toyoda S, et al. Band offsets of polar and nonpolar GaN/ZnO heterostructures determined by synchrotron radiation photoemission spectroscopy. Phys Status Solidi B, 2011, 248, 956

[658]

King P D C, Veal T D, Kendrick C E, et al. InN/GaN valence band offset: High-resolution X-ray photoemission spectroscopy measurements. Phys Rev B, 2008, 78, 033308

[659]

King P D C, Veal T D, Jefferson P H, et al. Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy. Appl Phys Lett, 2007, 90, 132105

[660]

Martin G, Botchkarev A, Rockett A, et al. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by X-ray photoemission spectroscopy. Appl Phys Lett, 1996, 68, 2541

[661]

Mietze C, Landmann M, Rauls E, et al. Band offsets in cubic GaN/AlN superlattices. Phys Rev B, 2011, 83, 195301

[662]

Sang L, Zhu Q S, Yang S Y, et al. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy. Nanoscale Res Lett, 2014, 9, 470

[663]

Zhao G, Li H, Wang L, et al. Measurement of semi-polar (11-22) plane AlN/GaN heterojunction band offsets by X-ray photoelectron spectroscopy. Appl Phys A, 2018, 124, 130

[664]

Mahmood Z H, Shah A P, Kadir A, et al. Determination of InN- GaN heterostructure band offsets from internal photoemission measurements. Appl Phys Lett, 2007, 91, 152108

[665]

Wu C L, Lee H M, Kuo C T, et al. Polarization-induced valence-band alignments at cation- and anion-polar InN/GaN heterojunctions. Appl Phys Lett, 2007, 91, 042112

[666]

Shih C F, Chen N C, Chang P H, et al. Band offsets of InN/GaN interface. Jpn J Appl Phys, 2005, 44, 7892

[667]

Wang K, Lian C, Su N, et al. Conduction band offset at the InN/GaN heterojunction. Appl Phys Lett, 2007, 91, 232117

[668]

Shibin K T C, Gupta G. Band alignment and Schottky behaviour of InN/GaN heterostructure grown by low-temperature low-energy nitrogen ion bombardment. RSC Adv, 2014, 4, 27308

[669]

Akazawa M, Gao B, Hashizume T, et al. Measurement of valence-band offsets of InAlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. J Appl Phys, 2011, 109, 013703

[670]

Jiao W, Kong W, Li J, et al. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition. AIP Adv, 2016, 6, 035211

[671]

Ekpunobi A J, Animalu A O E. Band offsets and properties of AlGaAs/GaAs and AlGaN/GaN material systems. Superlattices Microstruct, 2002, 31, 247

[672]

Sun H, Park Y J, Li K H, et al. Nearly-zero valence band and large conduction band offset at BAlN/GaN heterointerface for optical and power device application. Appl Surf Sci, 2018, 458, 949

[673]

Sun H, Park Y J, Li K H, et al. Band alignment of B0.14Al0.86N/ Al0.7Ga0.3N heterojunction. Appl Phys Lett, 2017, 111, 122106

[674]

Fares C, Tadjer M J, Woodward J, et al. Valence and conduction band offsets for InN and III-nitride ternary alloys on (?201) bulk β-Ga2O3. ECS J Solid State Sci Technol, 2019, 8, Q3154

[675]

Carey IV P H, Ren F, Hays D C, et al. Band offsets in ITO/Ga2O3 heterostructures. Appl Surf Sci, 2017, 422, 179

[676]

Fares C, Ren F, Lambers E, et al. Valence and conduction band offsets for sputtered AZO and ITO on (010) (Al0.14Ga0.86)2O3. Semicond Sci Technol, 2019, 34, 025006

[677]

Fares C, Ren F, Lambers E, et al. Valence- and conduction-band offsets for atomiclayer-deposited Al2O3 on (010) (Al0.14Ga0.86)2O3. J Electron Mater, 2019, 48, 1568

[678]

Liu J M, Liu X L, Xu X Q, et al. Measurement of w-InN/h-BN heterojunction band offsets by X-ray photoemission spectroscopy. Nanoscale Res Lett, 2010, 5, 1340

[679]

Zhang Z H, Zhang Y, Bi W, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Phys Status Solidi A, 2016, 213, 3078

[680]

Karpov S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt Quantum Electron, 2015, 47, 1293

[681]

Bayerl M W, Brandt M S, Graf T, et al. g values of effective mass donors in Al xGa1– xN alloys. Phys Rev B, 2001, 63, 165204

[682]

McGill S A, Cao K, Fowler W B, et al. Bound-polaron model of effective-mass binding energies in GaN. Phys Rev B, 1998, 57, 8951

[683]

Im J S, Moritz A, Steuber F, et al. Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl Phys Lett, 1997, 70, 631

[684]

Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl Phys Express, 2010, 3, 031002

[685]

Hirayama H. Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes. J Appl Phys, 2005, 97, 091101

[686]

Müβener, Teubert J, Hille P, et al. Probing the internal electric field in GaN/AlGaN nanowire heterostructures. Nano Lett, 2014, 14, 5118

[687]

Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys Rev Lett, 1984, 53, 2173

[688]

Carnevale S D, Kent T F, Phillips P J, et al. Polarization-induced pn diodes in wide-bandgap nanowires with ultraviolet electroluminescence. Nano Lett, 2012, 12, 915

[689]

Jena D, Heikman S, Green D, et al. Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys. Appl Phys Lett, 2002, 81, 4395

[690]

Green D S, Haus E, Wu F, et al. Polarity control during molecular beam epitaxy growth of Mg-doped GaN. J Vac Sci Technol B, 2003, 21, 1804

[691]

Kuo Y K, Shih Y H, Tsai M C, et al. Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier. IEEE Photonics Technol Lett, 2011, 23, 1630

[692]

Tangi M, Mishra P, Janjua B, et al. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1– xN nanowires grown by plasma assisted molecular beam epitaxy. J Appl Phys, 2016, 120, 045701

[693]

Choi S, Wu F, Shivaraman R, et al. Observation of columnar microstructure in lattice-matched InAlN/GaN grown by plasma assisted molecular beam epitaxy. Appl Phys Lett, 2012, 100, 232102

[694]

Zhang Z H, Tan S T, Ju Z, et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes. J Disp Technol, 2013, 9, 226

[695]

Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2010, 26, 014036

[696]

Shatalov M, Sun W, Jain R, et al. High power AlGaN ultraviolet light emitters. Semicond Sci Technol, 2014, 29, 084007

[697]

Katsuragawa M, Sota S, Komori M, et al. Thermal ionization energy of Si and Mg in AlGaN. J Cryst Growth, 1998, 189, 528

[698]

Li L, Miyachi Y, Miyoshi M, et al. Enhanced emission efficiency of deep ultraviolet light-emitting AlGaN multiple quantum wells grown on an n-AlGaN underlying layer. IEEE Photonics J, 2016, 8, 1601710

[699]

Zhang Z H, Zhang Y, Bi W, et al. A charge inverter for III-nitride light-emitting diodes. Appl Phys Lett, 2016, 108, 133502

[700]

Ho J K, Jong C S, Chiu C C, et al. Low-resistance ohmic contacts to p-type GaN. Appl Phys Lett, 1999, 74, 1275

[701]

Chae S W, Kim K C, Kim D H, et al. Highly transparent and low-resistant ZnNi/indium tin oxide Ohmic contact on p-type GaN. Appl Phys Lett, 2007, 90, 181101

[702]

Jang H W, Lee J L. Transparent Ohmic contacts of oxidized Ru and Ir on p-type GaN. J Appl Phys, 2003, 93, 5416

[703]

Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping. Appl Phys Lett, 1996, 69, 3737

[704]

Neugebauer S, Hoffmann M, Witte H, et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications. Appl Phys Lett, 2017, 110, 102104

[705]

Zhang Y, Krishnamoorthy S, Akyol F, et al. Reflective metal/semiconductor tunnel junctions for hole injection in AlGaN UV LEDs. Appl Phys Lett, 2017, 111, 051104

[706]

Krishnamoorthy S, Akyol F, Rajan S. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes. Appl Phys Lett, 2014, 105, 141104

[707]

Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes. IEEE J Quantum Electron, 2016, 52, 3300105

[708]

Cheng B, Choi S, Northrup J E, et al. Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl Phys Lett, 2013, 102, 231106

[709]

Kim J K, Waldron E L, Li Y L, et al. P-type conductivity in bulk Al xGa1– xN and Al xGa1– xN/Al yGa1– yN superlattices with average Al mole fraction > 20%. Appl Phys Lett, 2004, 84, 3310

[710]

Zhu T G, Denyszyn J C, Chowdhury U, et al. AlGaN-GaN UV light-emitting diodes grown on SiC by metal-organic chemical vapor deposition. IEEE J Sel Top Quantum Electron, 2002, 8, 298

[711]

Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett, 2010, 97, 062103

[712]

Zhang Z H, Li L, Zhang Y, et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt Express, 2017, 25, 16550

[713]

Jeon S R, Song Y H, Jang H J, et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl Phys Lett, 2001, 78, 3265

[714]

Mehnke F, Kuhn C, Guttmann M, et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl Phys Lett, 2014, 105, 051113

[715]

Tsai C L, Liu H H, Chen J W, et al. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template. Solid-State Electron, 2017, 138, 84

[716]

Zhang Z H, Huang Chen S W, Zhang Y, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes. ACS Photonics, 2017, 4, 1846

[717]

Tsai M C, Yen S H, Kuo Y K. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl Phys Lett, 2011, 98, 111114

[718]

Kolbe T, Sembdner T, Knauer A, et al. (In)AlGaN deep ultraviolet light emitting diodes with optimized quantum well width. Phys Status Solidi A, 2010, 207, 2198

[719]

Norimichi N, Hirayama H, Yatabe T, et al. 222 nm single-peaked deep-UV LED with thin AlGaN quantum well layers. Phys Status Solidi C, 2009, 6, S459

[720]

Hirayama H, Noguchi N, Yatabe T, et al. 227 nm AlGaN light-emitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density. Appl Phys Express, 2008, 1, 051101

[721]

Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 071901

[722]

Xiu X, Zhang L, Li Y, Xiong Z, et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J Semicond, 2019, 40, 011805

[723]

Pratiyush A S, Krishnamoorthy S, Muralidharan R, et al. Advances in Ga2O3 solar-blind UV photodetectors. In: Gallium Oxide. Elsevier, 2019, 369

[724]

Sedhain A, Lin J Y, Jiang H X. Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN. Appl Phys Lett, 2012, 100, 221107

[725]

Bickermann M, Epelbaum B M, Filip O, et al. Deep-UV transparent bulk single-crystalline AlN substrates. Phys Status Solidi C, 2010, 7, 1743

[726]

Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 2008, 310, 4020

[727]

Bickermann M, Epelbaum B M, Winnacker A. PVT growth of bulk AlN crystals with low oxygen contamination. Phys Status Solidi C, 1993, 1993

[728]

Slack G A, Schowalter L J, Morelli D, et al. Some effects of oxygen impurities on AlN and GaN. J Cryst Growth, 2002, 246, 287

[729]

Haughn C R, Rupper G, Wunderer T, et al. Highly radiative nature of ultra-thin c-plane Al-rich AlGaN/AlN quantum wells for deep ultraviolet emitters. Appl Phys Lett, 2019, 114, 102101

[730]

Chu C, Tian K, Zhang Y, et al. Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes. Phys Status Solidi A, 2019, 216, 1800815

[731]

Bryan I, Bryan Z, Washiyama S, et al. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl Phys Lett, 2018, 112, 062102

[732]

Kirste R, Mita S, Guo Q, et al. Recent breakthroughs in AlGaNbased UV light emitters. IEEE Research and Applications of Photonics In Defense Conference (RAPID), 2018, 18196129

[733]

Bryan I, Bryan Z, Mita S, et al. Surface kinetics in AlN growth: A universal model for the control of surface morphology in III-nitrides. J Cryst Growth, 2016, 438, 81

[734]

Hartmann C, Wollweber J, Dittmar A, et al. Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn J Appl Phys, 2013, 52, 08JA06

[735]

Sumathi R R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. Cryst Eng Comm, 2013, 15, 2232

[736]

Mokhov E, Izmaylova I, Kazarova O, et al. Specific features of sublimation growth of bulk AlN crystals on SiC wafers. Phys Status Solidi C, 2013, 10, 445

[737]

Park S H, Shim J I. Carrier density dependence of polarization switching characteristics of light emission in deep-ultraviolet AlGaN/AlN quantum well structures. Appl Phys Lett, 2013, 102, 221109

[738]

Dalmau R, Moody B, Xie J, et al. Characterization of dislocation arrays in AlN single crystals grown by PVT. Phys Status Solidi A, 2011, 208, 1545

[739]

Herro Z, Zhuang D, Schlesser R, et al. Growth of AlN single crystalline boules. J Cryst Growth, 2010, 312, 2519

[740]

Kinoshita T, Obata T, Nagashima T, et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2013, 6, 092103

[741]

Kinoshita T, Hironaka K, Obata T, et al. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2012, 5, 122101

[742]

Grandusky J R, Chen J, Gibb S R, et al. 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl Phys Express, 2013, 6, 032101

[743]

An Y, Sun Y, Zhang M, et al. Tuning the electronic structures and transport properties of zigzag blue phosphorene nanoribbons. IEEE Trans Electron Devices, 2018, 65, 4646

[744]

Liu H, Neal A T, Zhu Z, Luo Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033

[745]

Zhang M, An Y, Sun Y, et al. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures. Phys Chem Chem Phys, 2017, 19, 17210

[746]

Li F, Liu X, Wang Y, et al. Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility. J Mater Chem C, 2016, 4, 2155

[747]

Dagan R, Vaknin Y, Henning A, et al. Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers. Appl Phys Lett, 2019, 114, 101602

[748]

Zhou X, Hu X, Yu J, et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv Funct Mater, 2018, 28, 1706587

[749]

Nayeri M, Fathipour M. A numerical analysis of electronic and optical properties of the zigzag MoS2 nanoribbon under uniaxial strain. IEEE Trans Electron Devices, 2018, 65, 1988

[750]

Fan Z Q, Jiang X W, Luo J W, et al. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys Rev B, 2017, 96, 165402

[751]

An Y, Zhang M, Wu D, et al. The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions. J Mater Chem C, 2016, 4, 10962

[752]

Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett, 2014, 14, 5590

[753]

Zhao J, Cheng K, Han N, et al. Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures. Wiley Interdiscip Rev Comput Mol Sci, 2018, 8, e1353

[754]

Koppens F H L, Mueller T, Avouris P, et al . Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 2014, 9, 780

[755]

Zhu X, Lei S, Tsai S H, et al. A study of vertical transport through graphene toward control of quantum tunneling. Nano Lett, 2018, 18, 682

[756]

Asres G A, J?rvinen T, Lorite G S,et al. High photoresponse of individual WS2 nanowire-nanoflake hybrid materials. Appl Phys Lett, 2018, 112, 233103

[757]

Chu D, Lee Y H, Kim E K. Selective control of electron and hole tunneling in 2D assembly. Sci Adv, 2017, 3, e1602726

[758]

Yamaguchi T, Moriya R, Inoue Y, et al. Tunneling transport in a few monolayer-thick WS2/graphene heterojunction. Appl Phys Lett, 2014, 105, 223109

[759]

Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics, 2014, 8, 899

[760]

Kim S, Oh S, Kim J. Ultrahigh deep-UV sensitivity in graphene-gated β-Ga2O3 phototransistors. ACS Photonics, 2019, 6, 1026

[761]

Schubert M, Mock A, Korlacki R, et al. Longitudinal phonon plasmon mode coupling in β-Ga2O3. Appl Phys Lett, 2019, 114, 102102

[762]

Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Electrical properties of bulk semi-insulating β-Ga2O3(Fe). Appl Phys Lett, 2018, 113, 142102

[763]

Hu Z, Nomoto K, Li W, et al. Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl Phys Lett, 2018, 113, 122103

[764]

Joishi C, Xia Z, McGlone J, et al. Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl Phys Lett, 2018, 113, 123501

[765]

Neal A T, Mou S, Rafique S, et al. Donors and deep acceptors in β-Ga2O3. Appl Phys Lett, 2018, 113, 062101

[766]

Wong M H, Lin C H, Kuramata A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl Phys Lett, 2018, 113, 102103

[767]

Yang J, Ren F, Tadjer M, et al. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW·cm-2 figure-of-merit. AIP Adv, 2018, 8, 055026

[768]

Lee S U, Jeong J. Short time helium annealing for solution-processed amorphous indium-gallium-zinc-oxide thin film transistors. AIP Adv, 2018, 8, 085206

[769]

Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl Phys Lett, 2018, 113, 092102

[770]

Gibbon J T, Jones L, Roberts J W, et al. Band alignments at Ga2O3 heterojunction interfaces with Si and Ge. AIP Adv, 2018, 8, 065011

[771]

Zhang S, Lian X, Ma Y, et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J Semicond, 2018, 39, 083003

[772]

Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. J Appl Phys, 2018, 123, 115702

[773]

Zhang K, Feng Q, Huang L, et al. (InxGa1– x)2O3 photodetectors fabricated on sapphire at different temperatures by PLD. IEEE Photon J, 2018, 10, 6802508

[774]

Feng Q, Hu Z, Feng Z, et al. Research on the growth of β-(AlGa)2O3 film and the analysis of electrical characteristics of Ni/Au Schottky contact using Tung’s model. Superlattices Microstruct, 2018, 120, 441-447

[775]

Feng Q, Feng Z, Hu Z, et al. Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode. Appl Phys Lett, 2018, 112, 072103

[776]

Zhang Y, Joishi C, Xia Z, et al. Demonstration of β-(AlxGa1– x)2O3/ Ga2O3 double heterostructure field effect transistors. Appl Phys Lett, 2018, 112, 233503

[777]

Zhang Y, Neal A, Xia Z, et al. Demonstration of high mobility and quantum transport in modulationdoped β-(AlxGa1– x)2O3/Ga2O3 heterostructures. Appl Phys Lett, 2018, 112, 173502

[778]

Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9, 36997-37005

[779]

Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46, 7217

[780]

Qian L X, Wu Z H, Zhang Y Y, et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics, 2017, 4, 2203

[781]

Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166

[782]

Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 2017, 110, 221107

[783]

Guo D, Wu Z, Li P, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express, 2014, 4, 1067

[784]

Moudgil A, Dhyani V, Das S. High speed efficient ultraviolet photodetector based on 500 nm width multiple WO3 nanowires. Appl Phys Lett, 2018, 113, 101101

[785]

Khan F, Khan W, Kim J H, et al. Oxygen desorption kinetics of ZnO nanorod-gated AlGaN/GaN HEMT-based UV photodetectors. AIP Adv, 2018, 8, 075225

[1]

Deng Hong, Tang Bin, Cheng He, Wei Min, Chen Jinju. Horizontal Growth and Ultraviolet Sensitivity Characteristics of ZnO Nanowires on Sapphire Substrates. J. Semicond., 2007, 28(1): 56.

[2]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[3]

Shiyi Zhuo, Xi Liu, Xuechao Liu, Erwei Shi. Recent progress in research of f-SiC codoped with N-B-Al pairs for optoelectronics. J. Semicond., 2015, 36(8): 083003. doi: 10.1088/1674-4926/36/8/083003

[4]

Xu?Yang, Chi Baoyong, Xu Yang , Qi Nan, Wang Zhihua. A 2-mW 50-dB DR wideband hybrid AGC for a GNSS receiver in 65 nm CMOS. J. Semicond., 2012, 33(7): 075006. doi: 10.1088/1674-4926/33/7/075006

[5]

Zhou Xi, Guo Jianmin, Li Wenhong. Design and Implementation of a High-Resolution Hybrid DPWM. J. Semicond., 2007, 28(6): 967.

[6]

Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers. J. Semicond., 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003

[7]

Zhu Haobo, Mao Luhong, Yu Changliang, Chen Hongda, Tang Jun. A High Speed,12-Channel Parallel,Monolithic IntegratedCMOS OEIC Receiver. J. Semicond., 2007, 28(9): 1341.

[8]

Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond., 2019, 40(4): 041901. doi: 10.1088/1674-4926/40/4/041901

[9]

Yu Wei, Cui Shuangkui, , Lu Wanbing, Wang Chunsheng. Plasma Enhanced Chemical Vapor Deposition and UltravioletLuminescence of Nanocrystalline 6H-SiC Thin Films. J. Semicond., 2006, 27(10): 1767.

[10]

Zhu Huili, Chen Xiaping, Wu Zhengyun. Separate Absorption and Multiplication 4H-SiC UltravioletAvalanche Photodetector. J. Semicond., 2007, 28(2): 284.

[11]

Zhang Xulin, Ma Huilian, Jin Zhonghe, Ding Chun. An Open-Loop Test of a Resonator Fiber Optic Gyro. J. Semicond., 2006, 27(4): 688.

[12]

Chengyang Xu, Jinliang Yan, Chao Li, Huihui Zhuang. The effect of the multi-period on the properties of deep-ultraviolet transparent conductive Ga2O3/ITO alternating multilayer films. J. Semicond., 2013, 34(10): 103004. doi: 10.1088/1674-4926/34/10/103004

[13]

Hideki Hirayama. Research status and prospects of deep ultraviolet devices. J. Semicond., 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301

[14]

Jinmin Li, Xinqiang Wang, Dabing Li, Tongbo Wei. Preface to the Special Topic on Deep Ultraviolet Light-Emitting Materials and Devices. J. Semicond., 2019, 40(12): 120101. doi: 10.1088/1674-4926/40/12/120101

[15]

Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001

[16]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[17]

Huang Limin, Xie Jiachun, Liang Jin. High Quality Ultraviolet Photodetectors Based on Silicon Carbide. J. Semicond., 2005, 26(S1): 256.

[18]

Degang Zhao. III-nitride based ultraviolet laser diodes. J. Semicond., 2019, 40(12): 120402. doi: 10.1088/1674-4926/40/12/120402

[19]

Guodong Yan, Minqiang Wang, Zhi Yang. ZnO/Ag nanowires composite film ultraviolet photoconductive detector. J. Semicond., 2015, 36(8): 084006. doi: 10.1088/1674-4926/36/8/084006

[20]

Li Guike, Feng Peng, Wu Nanjian. A novel monolithic ultraviolet image sensor based on a standard CMOS process. J. Semicond., 2011, 32(10): 105009. doi: 10.1088/1674-4926/32/10/105009

Search

Advanced Search >>

GET CITATION

N Alfaraj, J W Min, C H Kang, A A Alatawi, D Priante, R C Subedi, M Tangi, T K Ng, B S Ooi, Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials[J]. J. Semicond., 2019, 40(12): 121801. doi: 10.1088/1674-4926/40/12/121801.

Export: BibTex EndNote

Article Metrics

Article views: 2150 Times PDF downloads: 280 Times Cited by: 0 Times

History

Manuscript received: 15 April 2019 Manuscript revised: Online: Uncorrected proof: 31 May 2019 Published: 09 December 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图