J. Semicond. > Volume 41?>?Issue 6?> Article Number: 062303

1064 nm InGaAsP multi-junction laser power converters

Jiajing Yin 1, 2, , Yurun Sun 1, , Shuzhen Yu 1, , Yongming Zhao 1, , Rongwei Li 1, and Jianrong Dong 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile, 1064 nm InGaAsP multi-junction laser power converters have been developed using p+-InGaAs/n+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition (MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature IV measurements show that the 1 × 1 cm2 triple-junction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.

Key words: InGaAsPmulti-junction laser power converterconversion efficiency

Abstract: Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile, 1064 nm InGaAsP multi-junction laser power converters have been developed using p+-InGaAs/n+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition (MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature IV measurements show that the 1 × 1 cm2 triple-junction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.

Key words: InGaAsPmulti-junction laser power converterconversion efficiency



References:

[1]

Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference, 1996, 101

[2]

Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laserillumination. Prog Photovolt: Res Appl, 2008, 16(4), 289

[3]

Andreev V, Khvostikov V, Kalinovsky V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming. IEEE World Conference on Photovoltaic Energy Conversion, 2003, 761

[4]

Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109, 131107

[5]

Khvostikov V, Sorokina S, Potapovich N, et al. AlGaAs converters and arrays for laser power beaming. AIP Conference Proceedings, 2015, 1679(1), 130002

[6]

Valdivia C E, Wilkins M M, Bouzazi B, et al. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Physics, Simulation, Photonic Eng Photovolt Devices IV, 2015, 9358, 93580E

[7]

Safard S, York M C A, Proulx F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 2016, 108(7), 071101

[8]

Green M A, Zhao J, Wang A, et al. 45 % efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett, 1992, 13(6), 317

[9]

Khvostikov V P, Sorokina S V, Potapovich N S, et al. GaInAsP/InP-based laser power converters (λ = 1064 nm). Semiconductors, 2018, 52(13), 1748

[10]

Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9), 1154

[11]

Mintairov S A, Emelyanov V M, Rybalchenko D V, et al. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 2016, 50(4), 517

[12]

Rybalchenko D V, Mintairov S A, Salii R A, et al. Metamorphic InGaAs photo-converters on GaAs substrates. J Phys: Conf Ser, 2016, 690(1), 012032

[13]

Rybalchenko D V, Mintairov S A, Salii R A, et al. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 2017, 51(1), 93

[14]

Kaluzhnyy N A, Mintaiov S A, Nadtochiy A M, et al. InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency. Electron Lett, 2017, 53(3), 173

[15]

Kim Y, Shin H B, Lee W H, et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol Energy Mater Sol Cells, 2019, 200, 109984

[16]

Pe?a R, Algora C. One-watt fiber-based power-by-light system for satellite applications. Prog Photovolt: Res Appl, 2012, 20(1), 117

[17]

Pena R, Algora C. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination. IEEE Trans Electron Devices, 2001, 48(2), 196

[18]

Guan C G, Liu W, Gao Q. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater Sci Semicond Process, 2018, 75, 136

[19]

Schubert J, Oliva E, Dimroth F. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56(2), 170

[20]

Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolts: Res Appl, 2015, 239(12), 1687

[21]

York M C A, Proulx F, Masson D P, et al. Thin n/p GaAs junctions for novel high-efficiency phototransducers based on a vertical epitaxial heterostructure architecture. MRS Adv, 2016, 1(14), 881

[22]

Fafard S, Proulx F, York M C A, et al. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent. Physics Simulation Photonic Eng Photovolt Devices V, 2016, 9743, 974304

[23]

Proulx F, York M C A, Provost P O, et al. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys Status Solidi-Rapid Res Lett, 2017, 11(2), 1600385

[24]

Burkhard H, Dinges H W, Kuphal E. Optical properties of In1– xGaxP1– yAsy, InP, GaAs, and GaP determined by ellipsometry. J Appl Phys, 1982, 53(1), 655

[1]

Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference, 1996, 101

[2]

Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laserillumination. Prog Photovolt: Res Appl, 2008, 16(4), 289

[3]

Andreev V, Khvostikov V, Kalinovsky V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming. IEEE World Conference on Photovoltaic Energy Conversion, 2003, 761

[4]

Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109, 131107

[5]

Khvostikov V, Sorokina S, Potapovich N, et al. AlGaAs converters and arrays for laser power beaming. AIP Conference Proceedings, 2015, 1679(1), 130002

[6]

Valdivia C E, Wilkins M M, Bouzazi B, et al. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Physics, Simulation, Photonic Eng Photovolt Devices IV, 2015, 9358, 93580E

[7]

Safard S, York M C A, Proulx F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 2016, 108(7), 071101

[8]

Green M A, Zhao J, Wang A, et al. 45 % efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett, 1992, 13(6), 317

[9]

Khvostikov V P, Sorokina S V, Potapovich N S, et al. GaInAsP/InP-based laser power converters (λ = 1064 nm). Semiconductors, 2018, 52(13), 1748

[10]

Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9), 1154

[11]

Mintairov S A, Emelyanov V M, Rybalchenko D V, et al. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 2016, 50(4), 517

[12]

Rybalchenko D V, Mintairov S A, Salii R A, et al. Metamorphic InGaAs photo-converters on GaAs substrates. J Phys: Conf Ser, 2016, 690(1), 012032

[13]

Rybalchenko D V, Mintairov S A, Salii R A, et al. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 2017, 51(1), 93

[14]

Kaluzhnyy N A, Mintaiov S A, Nadtochiy A M, et al. InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency. Electron Lett, 2017, 53(3), 173

[15]

Kim Y, Shin H B, Lee W H, et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol Energy Mater Sol Cells, 2019, 200, 109984

[16]

Pe?a R, Algora C. One-watt fiber-based power-by-light system for satellite applications. Prog Photovolt: Res Appl, 2012, 20(1), 117

[17]

Pena R, Algora C. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination. IEEE Trans Electron Devices, 2001, 48(2), 196

[18]

Guan C G, Liu W, Gao Q. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater Sci Semicond Process, 2018, 75, 136

[19]

Schubert J, Oliva E, Dimroth F. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56(2), 170

[20]

Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolts: Res Appl, 2015, 239(12), 1687

[21]

York M C A, Proulx F, Masson D P, et al. Thin n/p GaAs junctions for novel high-efficiency phototransducers based on a vertical epitaxial heterostructure architecture. MRS Adv, 2016, 1(14), 881

[22]

Fafard S, Proulx F, York M C A, et al. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent. Physics Simulation Photonic Eng Photovolt Devices V, 2016, 9743, 974304

[23]

Proulx F, York M C A, Provost P O, et al. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys Status Solidi-Rapid Res Lett, 2017, 11(2), 1600385

[24]

Burkhard H, Dinges H W, Kuphal E. Optical properties of In1– xGaxP1– yAsy, InP, GaAs, and GaP determined by ellipsometry. J Appl Phys, 1982, 53(1), 655

[1]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[2]

Wang Jianbo, Xiang Bing, Lou Chaogang, Zhang Xiaobing, Lei Wei, Mu Hui, Sun Qiang. Calculation of the Efficiency of GaAs Quantum Well Solar Cells. J. Semicond., 2006, 27(6): 1038.

[3]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[4]

Shaoying Ke, Chong Wang, Tao Pan, Jie Yang, Yu Yang. Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell. J. Semicond., 2014, 35(3): 034013. doi: 10.1088/1674-4926/35/3/034013

[5]

Yinsheng Peng, Shufeng Gong, Kai Liu, Minghai Yao. Nano-sphere surface arrays based on GaAs solar cells. J. Semicond., 2020, 41(1): 012701. doi: 10.1088/1674-4926/41/1/012701

[6]

Cao Yulian, Lian Peng, Wang Qing, Wu Xuming, He Guorong, Cao Qing, Song Guofeng, Chen Lianghui. 780nm InGaAsP/InGaP/AlGaAs High Power Semiconductor Laser. J. Semicond., 2006, 27(9): 1621.

[7]

, , , , , , , . . J. Semicond., 2005, 26(9): 1793.

[8]

, , , , , , . . J. Semicond., 2005, 26(7): 1469.

[9]

Chong Feng, Wang Jun, Xiong Cong, Wang Cuiluan, Han Lin, Wu Peng, Wang Guan, Ma Xiaoyu. An asymmetric broad waveguide structure for a 0.98-μm high-conversion-efficiency diode laser. J. Semicond., 2009, 30(6): 064005. doi: 10.1088/1674-4926/30/6/064005

[10]

Yongming Zhao, Jianrong Dong, Kuilong Li, Yurun Sun, Xulu Zeng, Yang He, Shuzhen Yu, Hui Yang. InGaAsP/InGaAs tandem photovoltaic devices for four-junction solar cells. J. Semicond., 2015, 36(4): 044011. doi: 10.1088/1674-4926/36/4/044011

[11]

Qing Ke, Shaoyang Tan, Songtao Liu, Dan Lu, Ruikang Zhang, Wei Wang, Chen Ji. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser. J. Semicond., 2015, 36(9): 094010. doi: 10.1088/1674-4926/36/9/094010

[12]

Yu Lijuan, Zhao Hongquan, Du Yun, Li Jing, Huang Yongzhen. CW InP-InGaAsP Quantum-Well Laser on Si Fabricated by Wafer Bonding. J. Semicond., 2007, 28(7): 1117.

[13]

Jie Huang, Yurun Sun, Yongming Zhao, Shuzhen Yu, Jianrong Dong, Jiping Xue, Chi Xue, Jin Wang, Yunqing Lu, Yanwen Ding. Four-junction AlGaAs/GaAs laser power converter. J. Semicond., 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003

[14]

Cheng Wei, Jin Zhi, Yu Jinyong, Liu Xinyu. Design of InGaAsP Composite Collector for InP DHBT. J. Semicond., 2007, 28(6): 943.

[15]

Xuguang Zhang, Jie Jin. Multi-mode multi-band power amplifier module with high low-power efficiency. J. Semicond., 2015, 36(10): 105001. doi: 10.1088/1674-4926/36/10/105001

[16]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[17]

Kewei Cao, Tong Liu, Jingming Liu, Hui Xie, Dongyan Tao, Youwen Zhao, Zhiyuan Dong, Feng Hui. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell. J. Semicond., 2016, 37(6): 063002. doi: 10.1088/1674-4926/37/6/063002

[18]

Huang Zhanchao, Wu Huizhen, Lao Yanfeng, Liu Cheng, Cao Meng. XRD Reciprocal Space Mapping of InAsP/InGaAsP/InP Strain Epilayers. J. Semicond., 2006, 27(S1): 58.

[19]

Cao Meng, Wu Huizhen, Lao Yanfeng, Liu Cheng, Xie Zhengsheng, Cao Chunfang. Influence of Etching on the Luminescence Characteristic of Strained InAsP/InGaAsP Multiple Quantum Wells。. J. Semicond., 2007, 28(S1): 467.

[20]

Xiaosheng Qu, Sisi Zhang, Hongyin Bao, Liling Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003

Search

Advanced Search >>

GET CITATION

J J Yin, Y R Sun, S Z Yu, Y M Zhao, R W Li, J R Dong, 1064 nm InGaAsP multi-junction laser power converters[J]. J. Semicond., 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303.

Export: BibTex EndNote

Article Metrics

Article views: 223 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 17 October 2019 Manuscript revised: 26 November 2019 Online: Accepted Manuscript: 13 February 2020 Uncorrected proof: 18 February 2020 Published: 01 June 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图