J. Semicond. > Volume 41?>?Issue 3?> Article Number: 032701

Simulation analysis of a high efficiency GaInP/Si multijunction solar cell

M. Benaicha 1, , L. Dehimi 1, 2, , F. Pezzimenti 3, , and F. Bouzid 4,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: The solar power conversion efficiency of a gallium indium phosphide (GaInP)/silicon (Si) tandem solar cell has been investigated by means of a physical device simulator considering both mechanically stacked and monolithic structures. In particular, to interconnect the bottom and top sub-cells of the monolithic tandem, a gallium arsenide (GaAs)-based tunnel-junction, i.e. GaAs(n+)/GaAs(p+), which assures a low electrical resistance and an optically low-loss connection, has been considered. The J–V characteristics of the single junction cells, monolithic tandem, and mechanically stacked structure have been calculated extracting the main photovoltaic parameters. An analysis of the tunnel-junction behaviour has been also developed. The mechanically stacked cell achieves an efficiency of 24.27% whereas the monolithic tandem reaches an efficiency of 31.11% under AM1.5 spectral conditions. External quantum efficiency simulations have evaluated the useful wavelength range. The results and discussion could be helpful in designing high efficiency monolithic multijunction GaInP/Si solar cells involving a thin GaAs(n+)/GaAs(p+) tunnel junction.

Key words: GaInP/Sitandem solar cellspower efficiencynumerical simulations

Abstract: The solar power conversion efficiency of a gallium indium phosphide (GaInP)/silicon (Si) tandem solar cell has been investigated by means of a physical device simulator considering both mechanically stacked and monolithic structures. In particular, to interconnect the bottom and top sub-cells of the monolithic tandem, a gallium arsenide (GaAs)-based tunnel-junction, i.e. GaAs(n+)/GaAs(p+), which assures a low electrical resistance and an optically low-loss connection, has been considered. The J–V characteristics of the single junction cells, monolithic tandem, and mechanically stacked structure have been calculated extracting the main photovoltaic parameters. An analysis of the tunnel-junction behaviour has been also developed. The mechanically stacked cell achieves an efficiency of 24.27% whereas the monolithic tandem reaches an efficiency of 31.11% under AM1.5 spectral conditions. External quantum efficiency simulations have evaluated the useful wavelength range. The results and discussion could be helpful in designing high efficiency monolithic multijunction GaInP/Si solar cells involving a thin GaAs(n+)/GaAs(p+) tunnel junction.

Key words: GaInP/Sitandem solar cellspower efficiencynumerical simulations



References:

[1]

Asadpour R, Chavali R V K, Khan M R, et al. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ~ 33%) solar cell. Appl Phys Lett, 2015, 106, 243902

[2]

Bencherif H, Dehimi L, Pezzimenti F, et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 2019, 48, 3871

[3]

De Martino G, Pezzimenti F, Della Corte F G. Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc International Semiconductor Conference – CAS, 2018: 147

[4]

Bouzid F, Dehimi L, Pezzimenti F, et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 2018, 122, 57

[5]

Bouzid F, Dehimi L, Pezzimenti F. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 2017, 46, 6563

[6]

Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of the forward I–V characteristics of Al-implanted 4H-SiC p–i–n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J Electron Mater, 2018, 47, 1414

[7]

Fritah A, Dehimi L, Pezzimenti F, et al. Analysis of I–V–T characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 2019, 48, 3692

[8]

Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC p–i–n diodes. IEEE Trans Electron Devices, 2018, 65, 3371

[9]

Bencherif H, Dehimi L, Pezzimenti F, et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 2019, 125, 294

[10]

Olson J M, Friedman D J, Kurtz S. High efficiency III–V multi-junction solar cells. In: Handbook of Photovoltaic Science and Engineering. New York: John Wiley & Sons, 2003

[11]

Zheng Y, Mihara A, Yamamoto A. Analysis of In xGa1– xN/Si p–n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges. Appl Phys Lett, 2013, 103, 153509

[12]

Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (ver. 39). Prog Photovolt: Res Appl, 2012, 20, 12

[13]

Connolly J P, Mencaraglia D, Renard C, et al. Designing III–V multijunction solar cells on silicon. Prog Photovolt: Res Appl, 2014, 22, 810

[14]

Bencherif H, Dehimi L, Pezzimenti F, et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 2019, 182, 682

[15]

Green M A. Silicon wafer-based tandem cells: The ultimate photovoltaic solution. Proc SPIE Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, 2014: 89810

[16]

Bencherif H, Dehimi L, Pezzimenti F, et al. Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. Proc 2018 International Conference on Applied Smart Systems, ICASS, 2019, 8651990

[17]

Liu H, Ren Z, Liu Z, et al. The realistic energy yield potential of GaAs on Si tandem solar cells: a theoretical case study. Opt Express, 2015, 23, 382

[18]

Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. J Appl Phys, 2008, 104, 024507

[19]

Benaicha M, Dehimi L, Sengouga N. Simulation of double junction InGaN/Si tandem solar cell. J Semicond, 2017, 38, 044002

[20]

Lachaume R, Carioub R, Decobertb J, et al. Performance analysis of AlxGaAs/epi-Si(Ge) tandem solar cells: a simulation study. Energy Procedia, 2015, 84, 41

[21]

Essig S, Ward S, Steiner M A. Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 2015, 77, 464

[22]

Baudrit M, Algora C. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Phys Status Solidi A, 2010, 207, 474

[23]

K?nac? B, ?zen Y, Asar T, et al. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1–xP/GaAs structure. J Mater Sci Mater Electron, 2013, 24, 3269

[24]

Marouf Y, Dehimi L, Bouzid F, et al. Theoretical design and performance of In xGa1– xN single junction solar cell. Optik, 2018, 163, 22

[25]

Bouzid F, Pezzimenti F, Dehimi L, et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 2017, 56, 094301

[26]

Zeghdar K, L Dehimi L, Pezzimenti F, et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 2019, 58, 014002

[27]

Marouf Y, Dehimi L, Pezzimenti F. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 2019, 130, 377

[28]

Walker A W, Wheeldon J F, Valdivia C E, et al. Simulation, modeling and comparison of III–V tunnel junction designs for high efficiency metamorphic multi-junction solar cells. Proc of SPIE, Photonics North, 2010: 7750

[29]

Bouzid F, Pezzimenti F, Dehimi L, et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Materials, 2019, 48, 4107

[30]

Haas A, Wilcox J, Gray J, et al. Design of A GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J Photon Energy, 2011, 1, 180011

[31]

Goldberg Y A. Handbook series on semiconductor parameters. Vol. 2. London: World Scientific, 1999

[32]

Brozel M R, Stillman G E. Properties of gallium arsenide. 3rd ed. London: Institution of Electrical Engineers, 1996

[33]

Adachi S. Optical constants of semiconductors in tables and figures: Handbook. London: World Scientific, 2012

[34]

Sze S M. Physics of semiconductors devices. 2nd ed. New York: John Wiley & Sons, 2001

[35]

Michael S, Lavery J. Multi-junction photovoltaic model optimization for space and solar concentrator applications. Proc 23rd European Photovoltaic Solar Energy Conference, 2008, 790

[36]

Hegedus S. Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2003

[37]

Geisz J F, Steiner M A, I Garcia I, et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett, 2013, 103, 0411181

[1]

Asadpour R, Chavali R V K, Khan M R, et al. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ~ 33%) solar cell. Appl Phys Lett, 2015, 106, 243902

[2]

Bencherif H, Dehimi L, Pezzimenti F, et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 2019, 48, 3871

[3]

De Martino G, Pezzimenti F, Della Corte F G. Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc International Semiconductor Conference – CAS, 2018: 147

[4]

Bouzid F, Dehimi L, Pezzimenti F, et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 2018, 122, 57

[5]

Bouzid F, Dehimi L, Pezzimenti F. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 2017, 46, 6563

[6]

Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of the forward I–V characteristics of Al-implanted 4H-SiC p–i–n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J Electron Mater, 2018, 47, 1414

[7]

Fritah A, Dehimi L, Pezzimenti F, et al. Analysis of I–V–T characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 2019, 48, 3692

[8]

Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC p–i–n diodes. IEEE Trans Electron Devices, 2018, 65, 3371

[9]

Bencherif H, Dehimi L, Pezzimenti F, et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 2019, 125, 294

[10]

Olson J M, Friedman D J, Kurtz S. High efficiency III–V multi-junction solar cells. In: Handbook of Photovoltaic Science and Engineering. New York: John Wiley & Sons, 2003

[11]

Zheng Y, Mihara A, Yamamoto A. Analysis of In xGa1– xN/Si p–n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges. Appl Phys Lett, 2013, 103, 153509

[12]

Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (ver. 39). Prog Photovolt: Res Appl, 2012, 20, 12

[13]

Connolly J P, Mencaraglia D, Renard C, et al. Designing III–V multijunction solar cells on silicon. Prog Photovolt: Res Appl, 2014, 22, 810

[14]

Bencherif H, Dehimi L, Pezzimenti F, et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 2019, 182, 682

[15]

Green M A. Silicon wafer-based tandem cells: The ultimate photovoltaic solution. Proc SPIE Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, 2014: 89810

[16]

Bencherif H, Dehimi L, Pezzimenti F, et al. Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. Proc 2018 International Conference on Applied Smart Systems, ICASS, 2019, 8651990

[17]

Liu H, Ren Z, Liu Z, et al. The realistic energy yield potential of GaAs on Si tandem solar cells: a theoretical case study. Opt Express, 2015, 23, 382

[18]

Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. J Appl Phys, 2008, 104, 024507

[19]

Benaicha M, Dehimi L, Sengouga N. Simulation of double junction InGaN/Si tandem solar cell. J Semicond, 2017, 38, 044002

[20]

Lachaume R, Carioub R, Decobertb J, et al. Performance analysis of AlxGaAs/epi-Si(Ge) tandem solar cells: a simulation study. Energy Procedia, 2015, 84, 41

[21]

Essig S, Ward S, Steiner M A. Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 2015, 77, 464

[22]

Baudrit M, Algora C. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Phys Status Solidi A, 2010, 207, 474

[23]

K?nac? B, ?zen Y, Asar T, et al. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1–xP/GaAs structure. J Mater Sci Mater Electron, 2013, 24, 3269

[24]

Marouf Y, Dehimi L, Bouzid F, et al. Theoretical design and performance of In xGa1– xN single junction solar cell. Optik, 2018, 163, 22

[25]

Bouzid F, Pezzimenti F, Dehimi L, et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 2017, 56, 094301

[26]

Zeghdar K, L Dehimi L, Pezzimenti F, et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 2019, 58, 014002

[27]

Marouf Y, Dehimi L, Pezzimenti F. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 2019, 130, 377

[28]

Walker A W, Wheeldon J F, Valdivia C E, et al. Simulation, modeling and comparison of III–V tunnel junction designs for high efficiency metamorphic multi-junction solar cells. Proc of SPIE, Photonics North, 2010: 7750

[29]

Bouzid F, Pezzimenti F, Dehimi L, et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Materials, 2019, 48, 4107

[30]

Haas A, Wilcox J, Gray J, et al. Design of A GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J Photon Energy, 2011, 1, 180011

[31]

Goldberg Y A. Handbook series on semiconductor parameters. Vol. 2. London: World Scientific, 1999

[32]

Brozel M R, Stillman G E. Properties of gallium arsenide. 3rd ed. London: Institution of Electrical Engineers, 1996

[33]

Adachi S. Optical constants of semiconductors in tables and figures: Handbook. London: World Scientific, 2012

[34]

Sze S M. Physics of semiconductors devices. 2nd ed. New York: John Wiley & Sons, 2001

[35]

Michael S, Lavery J. Multi-junction photovoltaic model optimization for space and solar concentrator applications. Proc 23rd European Photovoltaic Solar Energy Conference, 2008, 790

[36]

Hegedus S. Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2003

[37]

Geisz J F, Steiner M A, I Garcia I, et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett, 2013, 103, 0411181

[1]

Cui Min, Chen Nuofu, Yang Xiaoli, Zhang Han. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell. J. Semicond., 2012, 33(2): 024006. doi: 10.1088/1674-4926/33/2/024006

[2]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[3]

Peng Zhenfei, Yang Shanshan, Feng Yong, Liu Yang, Hong Zhiliang. High efficiency class-I audio power amplifier using a single adaptive supply. J. Semicond., 2012, 33(9): 095002. doi: 10.1088/1674-4926/33/9/095002

[4]

Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001

[5]

Fu Cong, Song Zhitang, Chen Houpeng, Cai Daolin, Wang Qian, Hong Xiao, Ding Sheng, Li Xi. A novel low ripple charge pump with a 2X/1.5X booster for PCM. J. Semicond., 2012, 33(9): 095001. doi: 10.1088/1674-4926/33/9/095001

[6]

Zheng Ran, Wei Tingcun, Wang Jia, Gao Deyuan. An area-saving and high power efficiency charge pump built in a TFT-LCD driver IC. J. Semicond., 2009, 30(9): 095015. doi: 10.1088/1674-4926/30/9/095015

[7]

Wang Liangxing, Tu Jielei, Zhang Zhongwei, Chi Weiying, Peng Dongsheng, Chen Chaoqi, Chen Mingbo. High Efficiency Ge Bottom Cell for GaInP2/GaAs/Ge Three-Junction Tandem Solar Cell. J. Semicond., 2005, 26(S1): 196.

[8]

Shaoying Ke, Chong Wang, Tao Pan, Jie Yang, Yu Yang. Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell. J. Semicond., 2014, 35(3): 034013. doi: 10.1088/1674-4926/35/3/034013

[9]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[10]

Xiaosheng Qu, Sisi Zhang, Hongyin Bao, Liling Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003

[11]

Yurun Sun, Kuilong Li, Xulu Zeng. Influence of GaInP ordering on the performance of GaInP solar cells. J. Semicond., 2016, 37(7): 073001. doi: 10.1088/1674-4926/37/7/073001

[12]

Zhang Han, Chen Nuofu, Wang Yu, Yin Zhigang, Zhang Xingwang, Shi Huiwei, Wang Yanshuo, Huang Tianmao. Design and optimization of a monolithic GaInP/GaInAs tandem solar cell. J. Semicond., 2010, 31(8): 084009. doi: 10.1088/1674-4926/31/8/084009

[13]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[14]

Peng Wang, Gaofei Li, Miao Wang, Hong Li, Jing Zheng, Liyou Yang, Yigang Chen, Dongdong Li, Linfeng Lu. Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology. J. Semicond., 2020, 41(6): 062701. doi: 10.1088/1674-4926/41/6/062701

[15]

Li Yuanjie, Tang Qian, Li Bing, Feng Lianghuan, Zeng Guanggen, Cai Yaping, Zheng Jiagui, Cai Wei, Zhang Jingquan, Li Wei, Lei Zhi, Wu Lili. Preparation and Performance of CdS/CdTe Tandem Solar Cells. J. Semicond., 2007, 28(5): 722.

[16]

Wang Jianbo, Xiang Bing, Lou Chaogang, Zhang Xiaobing, Lei Wei, Mu Hui, Sun Qiang. Calculation of the Efficiency of GaAs Quantum Well Solar Cells. J. Semicond., 2006, 27(6): 1038.

[17]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[18]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[19]

Gao Yong, Liu Jing, Ma Li, Yu Mingbin. Numerical Simulation and Analysis of SiGeC/Si Heterojunction Power Diodes. J. Semicond., 2006, 27(6): 1068.

[20]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

Search

Advanced Search >>

GET CITATION

M Benaicha, L Dehimi, F Pezzimenti, F Bouzid, Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. J. Semicond., 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701.

Export: BibTex EndNote

Article Metrics

Article views: 434 Times PDF downloads: 22 Times Cited by: 0 Times

History

Manuscript received: 27 May 2019 Manuscript revised: 24 October 2019 Online: Accepted Manuscript: 06 February 2020 Uncorrected proof: 18 February 2020 Published: 01 March 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图