J. Semicond. >  In Press

Flexible inorganic oxide thin-film electronics enabled by advanced strategies

Tianyao Zhang , Guang Yao , , Taisong Pan , Qingjian Lu and Yuan Lin ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: With the advent of human-friendly intelligent life, as well as increasing demands for natural and seamless human-machine interactions, flexibility and wearability are among the inevitable development trends for electronic devices in the future. Due to the advantages of rich physicochemical properties, flexible and stretchable inorganic oxide thin-film electronics play an increasingly important role in the emerging and exciting flexible electronic field, and they will act as a critical player in next-generation electronics. However, a stable strategy to render flexibility while maintaining excellent performance of oxide thin films is the most demanding and challenging problem, both for academic and industrial communities. Thus, this review focuses on the latest advanced strategies to achieve flexible inorganic oxide thin-film electronics. This review emphasizes the physical transferring strategies that are based on mechanical peeling and the chemical transferring strategies that are based on sacrificial layer etching. Finally, this review evaluates and summarizes the merits and demerits of these strategies toward actual applications, concluding with a future perspective into the challenges and opportunities for the next-generation of flexible inorganic oxide thin-film electronics.

Key words: flexible electronicslaser lift-offvan der Waals epitaxytransfer printing

Abstract: With the advent of human-friendly intelligent life, as well as increasing demands for natural and seamless human-machine interactions, flexibility and wearability are among the inevitable development trends for electronic devices in the future. Due to the advantages of rich physicochemical properties, flexible and stretchable inorganic oxide thin-film electronics play an increasingly important role in the emerging and exciting flexible electronic field, and they will act as a critical player in next-generation electronics. However, a stable strategy to render flexibility while maintaining excellent performance of oxide thin films is the most demanding and challenging problem, both for academic and industrial communities. Thus, this review focuses on the latest advanced strategies to achieve flexible inorganic oxide thin-film electronics. This review emphasizes the physical transferring strategies that are based on mechanical peeling and the chemical transferring strategies that are based on sacrificial layer etching. Finally, this review evaluates and summarizes the merits and demerits of these strategies toward actual applications, concluding with a future perspective into the challenges and opportunities for the next-generation of flexible inorganic oxide thin-film electronics.

Key words: flexible electronicslaser lift-offvan der Waals epitaxytransfer printing



References:

[1]

Choi K J, Biegalski M, Li Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698), 1005

[2]

Wang C, Ke X, Wang J, et al. Ferroelastic switching in a layered-perovskite thin film. Nat Commun, 2016, 7, 10636

[3]

Lan H, Liang F, Jiang X, et al. Pushing nonlinear optical oxides into the mid-infrared spectral region beyond 10 μm: design, synthesis, and characterization of La3SnGa5O14. J Am Chem Soc, 2018, 140(13), 4684

[4]

Chen Z, Chen Z, Kuo C Y, et al. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat Commun, 2018, 9, 3764

[5]

Himcinschi C, Rix J, R?der C, et al. Ferroelastic domain identification in BiFeO3 crystals using Raman spectroscopy. Sci Rep, 2019, 9, 379

[6]

Lin Y, Feng D Y, Gao M, et al. Reducing dielectric loss in CaCu3Ti4O12 thin films by high-pressure oxygen annealing. J Mater Chem C, 2015, 3(14), 3438

[7]

Yao G, Gao M, Ji Y, et al. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates. Sci Rep, 2016, 6, 34683

[8]

Yao G, Ji Y, Liang W, et al. Influence of vicinal surface on the anisotropic dielectric properties of highly epitaxial Ba0.7Sr0.3TiO3 thin films. Nanoscale, 2017, 9(9), 3068

[9]

Choi M C, Kim Y, Ha C S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 2008, 33(6), 581

[10]

Jiang J, Bitla Y, Huang C W, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci Adv, 2017, 3(6), e1700121

[11]

Ahn J H, Kim H S, Lee K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science, 2006, 314(5806), 1754

[12]

Yao G, Jiang D, Li J, et al. Self-activated electrical stimulation for effective hair regeneration via a wearable omnidirectional pulse generator. ACS Nano, 2019, 13(11), 12345

[13]

Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun, 2018, 9, 5349

[14]

Yao G, Zhang H, Zhang S, et al. Highly sensitive pressure switch sensors and enhanced near ultraviolet photodetectors based on 3D hybrid film of graphene sheets decorated with silver nanoparticles. RSC Adv, 2017, 7(44), 27281

[15]

Zhang S, Zhang H, Yao G, et al. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J Alloys Compd, 2015, 652, 48

[16]

Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105(48), 18675

[17]

Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9(11), 929

[18]

Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758), 208

[19]

Ko H C, Shin G, Wang S, et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small, 2009, 5(23), 2703

[20]

Mohan A M V, Kim N H, Gu Y, et al. Merging of thin- and thick-film fabrication technologies: toward soft stretchable “island-bridge” devices. Adv Mater Technol, 2017, 2(4), 1600284

[21]

Xu S, Zhang Y, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344(6179), 70

[22]

Huang Z, Hao Y, Li Y, et al. Three-dimensional integrated stretchable electronics. Nat Electron, 2018, 1(8), 473

[23]

Jang K I, Li K, Chung H U, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 2017, 8, 15894

[24]

Wong W S, Sands T, Cheung N W, et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett, 1999, 75(10), 1360

[25]

Fujii T, David A, Schwach C, et al. Micro cavity effect in GaN-based light-emitting diodes formed by laser lift-off and etch-back technique. Jpn J Appl Phys, 2004, 43(3B)

[26]

Chu C F, Lai F I, Chu J T, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique. J Appl Phys, 2004, 95(8), 3916

[27]

Li C I, Lin J C, Liu H J, et al. Van der Waal epitaxy of flexible and transparent VO2 film on muscovite. Chem Mater, 2016, 28(11), 3914

[28]

Utama M I B, Mata M D L, Magen C, et al. Twinning-, polytypism-, and polarity-induced morphological modulation in nonplanar nanostructures with van der Waals epitaxy. Adv Funct Mater, 2013, 23(13), 1636

[29]

Ma C H, Lin J C, Liu H J, et al. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl Phys Lett, 2016, 108(25), 253104

[30]

Wong W S, Sands T, Cheung N W, et al. Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett, 1998, 72(5), 599

[31]

Luo J, Pohl R, Qi L, et al. Printing functional 3D microdevices by laser-induced forward transfer. Small, 2017, 13(9), 1602553

[32]

Serra P, Piqué A. Laser-induced forward transfer: fundamentals and applications. Adv Mater Technol, 2018, 4(1), 1800099

[33]

Fernández-Pradas J M, Sope?a P, González-Torres S, et al. Laser-induced forward transfer for printed electronics applications. Appl Phys A, 2018, 124(2), 214

[34]

Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials, 2018, 171, 57

[35]

Kérourédan O, Ribot E, Fricain J, et al. Magnetic resonance imaging for tracking cellular patterns obtained by laser-assisted bioprinting. Sci Rep, 2018, 8, 15777

[36]

Koch L, Brandt O, Deiwick A, et al. Laser-assisted bioprinting: a novel approach for bone regeneration application. Med Sci, 2018, 34(2), 125

[37]

Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep, 2017, 7(1), 1778

[38]

Gao Y, Li Y, Li R, et al. An accurate thermomechanical model for laser-driven microtransfer printing. J Appl Mech-T ASME, 2017, 84(6), 064501

[39]

Luo H, Wang C, Linghu C, et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric micro-structured stamp. Natl Sci Rev, 2019

[40]

Kim S, Son J H, Lee S H, et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv Mater, 2014, 26(44), 7480

[41]

Lee H E, Kim S, Ko J, et al. Skin-like oxide thin-film transistors for transparent displays. Adv Funct Mater, 2016, 26(34), 6170

[42]

Cheung Y F, Li K H, Choi H W, et al. Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl Mater & Interfaces, 2016, 8(33), 21440

[43]

Kim T I, Jung Y H, Song J, et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small, 2012, 8(11), 1643

[44]

Lee H E, Choi J, Lee S H, et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv Mater, 2018, 30(28), e1800649

[45]

Kim S J, Lee H E, Choi H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano, 2016, 10(12), 10851

[46]

Park K I, Son J H, Hwang G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater, 2014, 26(16), 2514

[47]

Lee H S, Chung J, Hwang G T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Funct Mater, 2014, 24(44), 6914

[48]

Mendes M, Fu J, Porneala C, et al. Lasers in the manufacturing of LEDs. Proc SPIE, 2010, 7584, 75840T

[49]

Chuang S H, Pan C T, Shen K C, et al. Thin film GaN LEDs using a patterned oxide sacrificial layer by chemical lift-off process. IEEE Photonics Technol Lett, 2013, 25(24), 2435

[50]

Morimoto A, Tanimura H, Yang H, et al. Platinum film patterning by laser lift-off using hydrocarbon film on insulating substrates. Appl Phys A, 2004, 79(4–6), 1015

[51]

Palneedi H, Park J H, Maurya D, et al. Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater, 2018, 30(14), e1705148

[52]

Xu X, Liu W, Li Y, et al. Flexible mica films for high-temperature energy storage. J Materiom, 2018, 4(3), 173

[53]

Ohta S I. Synthetic mica and its applications. Clay Sci, 2006, 12, 119

[54]

Shen L, Liu M, Ma C, et al. Enhanced bending tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrate. Mater Horiz, 2018, 5(2), 230

[55]

Gao D, Tan Z, Fan Z, et al. All-inorganic flexible Ba0.67Sr0.33TiO3 thin films with excellent dielectric properties over a wide range of frequencies. ACS Appl Mater Interfaces, 2019, 11(30), 27088

[56]

Tsai M F, Jiang J, Shao P W, et al. Oxide heteroepitaxy based flexible ferroelectric transistor. ACS Appl Mater Interfaces, 2019, 11(29), 25882

[57]

Quynh L T, Van C N, Tzeng W Y, et al. Flexible heteroepitaxy photoelectrode for photo-electrochemical water splitting. ACS Appl Energy Mater, 2018, 1(8), 3900

[58]

Liu H J, Wang C K, Su D, et al. Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Appl Mater Interfaces, 2017, 9(8), 7297

[59]

Wu P C, Chen P F, Do T H, et al. Heteroepitaxy of Fe3O4/muscovite: a new perspective for flexible spintronics. ACS Appl Mater Interfaces, 2016, 8(49), 33794

[60]

Hou W, Zhou Z, Zhang L, et al. Low-voltage-manipulating spin dynamics of flexible Fe3O4 films through ionic gel gating for wearable devices. ACS Appl Mater Interfaces, 2019, 11(24), 21727

[61]

Liu W, Ma R, Liu M, et al. Highly stable in-plane microwave magnetism in flexible Li0.35Zn0.3Fe2.35O4 (111) epitaxial thin films for wearable devices. ACS Appl Mater Interfaces, 2018, 10(38), 32331

[62]

Liu W, Liu M, Ma R, et al. Mechanical strain-tunable microwave magnetism in flexible CuFe2O4 epitaxial thin film for wearable sensors. Adv Funct Mater, 2018, 28(10), 1705928

[63]

Amrillah T, Bitla Y, Shin K, et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via the van der Waals epitaxy. ACS Nano, 2017, 11(6), 6122

[64]

Yang Y, Yuan G, Yan Z, et al. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 film. Adv Mater, 2017, 29(26), 1700425

[65]

Gao W, You L, Wang Y, et al. Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability. Adv Electron Mater, 2017, 3(8), 1600542

[66]

Liang Z, Ma C, Shen L, et al. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy, 2019, 57, 519-527

[67]

Liang Z, Liu M, Shen L, et al. All-inorganic flexible embedded thin film capacitors for dielectric energy storage with high performance. ACS Appl Mater Interfaces, 2019, 11(5), 5247

[68]

Wu J, Liang Z, Ma C, et al. Flexible lead-free BaTiO3 ferroelectric elements with high performance. IEEE Electron Device Lett, 2019, 40(6), 889

[69]

Wu P C, Lin Y P, Juan Y H, et al. Epitaxial yttria-stabilized zirconia on muscovite for flexible transparent ionic conductors. ACS Appl Nano Mater, 2018, 1(12), 6890

[70]

Bitla Y, Chen C, Lee H C, et al. Oxide heteroepitaxy for flexible optoelectronics. ACS Appl Mater Interfaces, 2016, 8(47), 32401

[71]

Ke S, Chen C, Fu N, et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl Mater Interfaces, 2016, 8(42), 28406

[72]

Li M, Wang Y, Wang Y, et al. AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application. Ceram Int, 2017, 43(17), 15442

[73]

Yang Y, Gao W, Xie Z, et al. An all-inorganic, transparent, flexible, and nonvolatile resistive memory. Adv Electron Mater, 2018, 4(12), 1800412

[74]

Zhang Y, Cao Y, Hu H, et al. Flexible metal-insulator transitions based on van der Waals oxide heterostructures. ACS Appl Mater Interfaces, 2019, 11(8), 8284

[75]

Menard E, Lee K J, Khang D Y, et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 2004, 84(26), 5398

[76]

Lee K J, J Lee J, Hwang H, et al. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small, 2005, 1(12), 1164

[77]

Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2005, 5(1), 33

[78]

Feng X, Meitl M A, Bowen A M, et al. Competing fracture in kinetically controlled transfer printing. Langmuir, 2007, 23(25), 12555

[79]

Yan Z, Pan T, Xue M, et al. Thermal release transfer printing for stretchable conformal bioelectronics. Adv Sci, 2017, 4(11), 1700251

[80]

Park K I, Lee S Y, Kim S, et al. Bendable and transparent barium titanate capacitors on plastic substrates for high performance flexible ferroelectric devices. Electrochem Solid State Lett, 2010, 13(7), G57

[81]

Yao G, Pan T, Yan Z, et al. Tailoring the energy band in flexible photodetector based on transferred ITO/Si heterojunction via interface engineering. Nanoscale, 2018, 10(8), 3893

[82]

Feng X, Yang B D, Liu Y, et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano, 2011, 5(4), 3326

[83]

Chen L, Nagy J, M Reano R M, et al. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon. Opt Mater Express, 2016, 6(7), 2460

[84]

Liang W, Gao M, Lu C, et al. Enhanced metal-insulator transition performance in scalable vanadium dioxide thin films prepared using a moisture-assisted chemical solution approach. ACS Appl Mater Interfaces, 2018, 10(9), 8341

[85]

Liao F, Yan Z, Liang W, et al. Tuning the metal-insulator transition of vanadium dioxide thin films using a stretchable structure. J Alloys Compd, 2017, 705, 468

[86]

Liao F, Zhu Z, Yan Z, et al. Ultrafast response flexible breath sensor based on vanadium dioxide. J Breath Res, 2017, 11(3), 036002

[87]

Liao F, Lu C, Yao G, et al. Ultrasensitive flexible temperature-mechanical dual-parameter sensor based on vanadium dioxide films. IEEE Electron Device Lett, 2017, 38(8), 1128

[88]

Gao M, Qi Z, Lu C, et al. Interplay between extra charge injection and lattice evolution in VO2/CH3NH3PbI3 heterostructure. Phys Status Solidi RRL, 2018, 12(4), 1700416

[89]

Kang Z, Gao M, Lu C, et al. Thickness-modulated temperature dependent optical properties of VO2 thin films. Appl Phys A, 2019, 125, 63

[90]

Lu C, Liang W, G Min G, et al. Terahertz transmittance of cobalt-doped VO2 thin film: investigated by terahertz spectroscopy and effective medium theory. IEEE Trans THz Sci Technol, 2019, 9(2), 177

[91]

Liang W, Z Zhuo Z, Ji Y, et al. In-plane orientation-dependent metal-insulator transition in vanadium dioxide induced by sublattice strain engineering. npj Quantum Mater, 2019, 4, 39

[92]

Fratzl P, Barth F G. Biomaterial systems for mechanosensing and actuation. Nature, 2009, 462(7272), 442

[93]

Schlom D G, Chen L Q, Fennie C J, et al. Elastic strain engineering of ferroic oxides. MRS Bulletin, 2014, 39(2), 118

[94]

Chen A, Su Q, Han H, et al. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv Mater, 2018, 31(4), 1803241

[95]

Bridoux G, Barzola-Quiquia J, Bern F, et al. An alternative route towards micro- and nano-patterning of oxide films. Nanotechnology, 2012, 23(8), 085302

[96]

Bakaul S R, Serrao C R, Lee M, et al. Single crystal functional oxides on silicon. Nat Commun, 2016, 7, 10547

[97]

Shen L, Wu L, Sheng Q, et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Adv Mater, 2017, 29(33), 1702411

[98]

Qi Y, Jafferis N T, Lyons K, et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett, 2010, 10(2), 524

[99]

Qi Y, Kim J, Nguyen T D, et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett, 2011, 11(3), 1331

[100]

Zhang Y, Shen L, Liu M, et al. Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano, 2017, 11(8), 8002

[101]

Ji D, Cai S, Paudel T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 2019, 570, 87

[102]

Lu D, Baek D J, Hong S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater, 2016, 15(12), 1255

[103]

Wang H, Shen L, Duan T, et al. Integration of both invariable and tunable microwave magnetisms in a single flexible La0.67Sr0.33MnO3 thin film. ACS Appl Mater Interfaces, 2019, 11(25), 22677

[104]

Dong G, Li S, Yao M, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science, 2019, 366(6464), 475

[1]

Choi K J, Biegalski M, Li Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698), 1005

[2]

Wang C, Ke X, Wang J, et al. Ferroelastic switching in a layered-perovskite thin film. Nat Commun, 2016, 7, 10636

[3]

Lan H, Liang F, Jiang X, et al. Pushing nonlinear optical oxides into the mid-infrared spectral region beyond 10 μm: design, synthesis, and characterization of La3SnGa5O14. J Am Chem Soc, 2018, 140(13), 4684

[4]

Chen Z, Chen Z, Kuo C Y, et al. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat Commun, 2018, 9, 3764

[5]

Himcinschi C, Rix J, R?der C, et al. Ferroelastic domain identification in BiFeO3 crystals using Raman spectroscopy. Sci Rep, 2019, 9, 379

[6]

Lin Y, Feng D Y, Gao M, et al. Reducing dielectric loss in CaCu3Ti4O12 thin films by high-pressure oxygen annealing. J Mater Chem C, 2015, 3(14), 3438

[7]

Yao G, Gao M, Ji Y, et al. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates. Sci Rep, 2016, 6, 34683

[8]

Yao G, Ji Y, Liang W, et al. Influence of vicinal surface on the anisotropic dielectric properties of highly epitaxial Ba0.7Sr0.3TiO3 thin films. Nanoscale, 2017, 9(9), 3068

[9]

Choi M C, Kim Y, Ha C S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 2008, 33(6), 581

[10]

Jiang J, Bitla Y, Huang C W, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci Adv, 2017, 3(6), e1700121

[11]

Ahn J H, Kim H S, Lee K J, et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science, 2006, 314(5806), 1754

[12]

Yao G, Jiang D, Li J, et al. Self-activated electrical stimulation for effective hair regeneration via a wearable omnidirectional pulse generator. ACS Nano, 2019, 13(11), 12345

[13]

Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun, 2018, 9, 5349

[14]

Yao G, Zhang H, Zhang S, et al. Highly sensitive pressure switch sensors and enhanced near ultraviolet photodetectors based on 3D hybrid film of graphene sheets decorated with silver nanoparticles. RSC Adv, 2017, 7(44), 27281

[15]

Zhang S, Zhang H, Yao G, et al. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J Alloys Compd, 2015, 652, 48

[16]

Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105(48), 18675

[17]

Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9(11), 929

[18]

Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758), 208

[19]

Ko H C, Shin G, Wang S, et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small, 2009, 5(23), 2703

[20]

Mohan A M V, Kim N H, Gu Y, et al. Merging of thin- and thick-film fabrication technologies: toward soft stretchable “island-bridge” devices. Adv Mater Technol, 2017, 2(4), 1600284

[21]

Xu S, Zhang Y, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344(6179), 70

[22]

Huang Z, Hao Y, Li Y, et al. Three-dimensional integrated stretchable electronics. Nat Electron, 2018, 1(8), 473

[23]

Jang K I, Li K, Chung H U, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 2017, 8, 15894

[24]

Wong W S, Sands T, Cheung N W, et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett, 1999, 75(10), 1360

[25]

Fujii T, David A, Schwach C, et al. Micro cavity effect in GaN-based light-emitting diodes formed by laser lift-off and etch-back technique. Jpn J Appl Phys, 2004, 43(3B)

[26]

Chu C F, Lai F I, Chu J T, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique. J Appl Phys, 2004, 95(8), 3916

[27]

Li C I, Lin J C, Liu H J, et al. Van der Waal epitaxy of flexible and transparent VO2 film on muscovite. Chem Mater, 2016, 28(11), 3914

[28]

Utama M I B, Mata M D L, Magen C, et al. Twinning-, polytypism-, and polarity-induced morphological modulation in nonplanar nanostructures with van der Waals epitaxy. Adv Funct Mater, 2013, 23(13), 1636

[29]

Ma C H, Lin J C, Liu H J, et al. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Appl Phys Lett, 2016, 108(25), 253104

[30]

Wong W S, Sands T, Cheung N W, et al. Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett, 1998, 72(5), 599

[31]

Luo J, Pohl R, Qi L, et al. Printing functional 3D microdevices by laser-induced forward transfer. Small, 2017, 13(9), 1602553

[32]

Serra P, Piqué A. Laser-induced forward transfer: fundamentals and applications. Adv Mater Technol, 2018, 4(1), 1800099

[33]

Fernández-Pradas J M, Sope?a P, González-Torres S, et al. Laser-induced forward transfer for printed electronics applications. Appl Phys A, 2018, 124(2), 214

[34]

Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials, 2018, 171, 57

[35]

Kérourédan O, Ribot E, Fricain J, et al. Magnetic resonance imaging for tracking cellular patterns obtained by laser-assisted bioprinting. Sci Rep, 2018, 8, 15777

[36]

Koch L, Brandt O, Deiwick A, et al. Laser-assisted bioprinting: a novel approach for bone regeneration application. Med Sci, 2018, 34(2), 125

[37]

Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep, 2017, 7(1), 1778

[38]

Gao Y, Li Y, Li R, et al. An accurate thermomechanical model for laser-driven microtransfer printing. J Appl Mech-T ASME, 2017, 84(6), 064501

[39]

Luo H, Wang C, Linghu C, et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric micro-structured stamp. Natl Sci Rev, 2019

[40]

Kim S, Son J H, Lee S H, et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv Mater, 2014, 26(44), 7480

[41]

Lee H E, Kim S, Ko J, et al. Skin-like oxide thin-film transistors for transparent displays. Adv Funct Mater, 2016, 26(34), 6170

[42]

Cheung Y F, Li K H, Choi H W, et al. Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl Mater & Interfaces, 2016, 8(33), 21440

[43]

Kim T I, Jung Y H, Song J, et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small, 2012, 8(11), 1643

[44]

Lee H E, Choi J, Lee S H, et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv Mater, 2018, 30(28), e1800649

[45]

Kim S J, Lee H E, Choi H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano, 2016, 10(12), 10851

[46]

Park K I, Son J H, Hwang G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater, 2014, 26(16), 2514

[47]

Lee H S, Chung J, Hwang G T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Funct Mater, 2014, 24(44), 6914

[48]

Mendes M, Fu J, Porneala C, et al. Lasers in the manufacturing of LEDs. Proc SPIE, 2010, 7584, 75840T

[49]

Chuang S H, Pan C T, Shen K C, et al. Thin film GaN LEDs using a patterned oxide sacrificial layer by chemical lift-off process. IEEE Photonics Technol Lett, 2013, 25(24), 2435

[50]

Morimoto A, Tanimura H, Yang H, et al. Platinum film patterning by laser lift-off using hydrocarbon film on insulating substrates. Appl Phys A, 2004, 79(4–6), 1015

[51]

Palneedi H, Park J H, Maurya D, et al. Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater, 2018, 30(14), e1705148

[52]

Xu X, Liu W, Li Y, et al. Flexible mica films for high-temperature energy storage. J Materiom, 2018, 4(3), 173

[53]

Ohta S I. Synthetic mica and its applications. Clay Sci, 2006, 12, 119

[54]

Shen L, Liu M, Ma C, et al. Enhanced bending tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrate. Mater Horiz, 2018, 5(2), 230

[55]

Gao D, Tan Z, Fan Z, et al. All-inorganic flexible Ba0.67Sr0.33TiO3 thin films with excellent dielectric properties over a wide range of frequencies. ACS Appl Mater Interfaces, 2019, 11(30), 27088

[56]

Tsai M F, Jiang J, Shao P W, et al. Oxide heteroepitaxy based flexible ferroelectric transistor. ACS Appl Mater Interfaces, 2019, 11(29), 25882

[57]

Quynh L T, Van C N, Tzeng W Y, et al. Flexible heteroepitaxy photoelectrode for photo-electrochemical water splitting. ACS Appl Energy Mater, 2018, 1(8), 3900

[58]

Liu H J, Wang C K, Su D, et al. Flexible heteroepitaxy of CoFe2O4/muscovite bimorph with large magnetostriction. ACS Appl Mater Interfaces, 2017, 9(8), 7297

[59]

Wu P C, Chen P F, Do T H, et al. Heteroepitaxy of Fe3O4/muscovite: a new perspective for flexible spintronics. ACS Appl Mater Interfaces, 2016, 8(49), 33794

[60]

Hou W, Zhou Z, Zhang L, et al. Low-voltage-manipulating spin dynamics of flexible Fe3O4 films through ionic gel gating for wearable devices. ACS Appl Mater Interfaces, 2019, 11(24), 21727

[61]

Liu W, Ma R, Liu M, et al. Highly stable in-plane microwave magnetism in flexible Li0.35Zn0.3Fe2.35O4 (111) epitaxial thin films for wearable devices. ACS Appl Mater Interfaces, 2018, 10(38), 32331

[62]

Liu W, Liu M, Ma R, et al. Mechanical strain-tunable microwave magnetism in flexible CuFe2O4 epitaxial thin film for wearable sensors. Adv Funct Mater, 2018, 28(10), 1705928

[63]

Amrillah T, Bitla Y, Shin K, et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via the van der Waals epitaxy. ACS Nano, 2017, 11(6), 6122

[64]

Yang Y, Yuan G, Yan Z, et al. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 film. Adv Mater, 2017, 29(26), 1700425

[65]

Gao W, You L, Wang Y, et al. Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability. Adv Electron Mater, 2017, 3(8), 1600542

[66]

Liang Z, Ma C, Shen L, et al. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy, 2019, 57, 519-527

[67]

Liang Z, Liu M, Shen L, et al. All-inorganic flexible embedded thin film capacitors for dielectric energy storage with high performance. ACS Appl Mater Interfaces, 2019, 11(5), 5247

[68]

Wu J, Liang Z, Ma C, et al. Flexible lead-free BaTiO3 ferroelectric elements with high performance. IEEE Electron Device Lett, 2019, 40(6), 889

[69]

Wu P C, Lin Y P, Juan Y H, et al. Epitaxial yttria-stabilized zirconia on muscovite for flexible transparent ionic conductors. ACS Appl Nano Mater, 2018, 1(12), 6890

[70]

Bitla Y, Chen C, Lee H C, et al. Oxide heteroepitaxy for flexible optoelectronics. ACS Appl Mater Interfaces, 2016, 8(47), 32401

[71]

Ke S, Chen C, Fu N, et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices. ACS Appl Mater Interfaces, 2016, 8(42), 28406

[72]

Li M, Wang Y, Wang Y, et al. AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application. Ceram Int, 2017, 43(17), 15442

[73]

Yang Y, Gao W, Xie Z, et al. An all-inorganic, transparent, flexible, and nonvolatile resistive memory. Adv Electron Mater, 2018, 4(12), 1800412

[74]

Zhang Y, Cao Y, Hu H, et al. Flexible metal-insulator transitions based on van der Waals oxide heterostructures. ACS Appl Mater Interfaces, 2019, 11(8), 8284

[75]

Menard E, Lee K J, Khang D Y, et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 2004, 84(26), 5398

[76]

Lee K J, J Lee J, Hwang H, et al. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small, 2005, 1(12), 1164

[77]

Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2005, 5(1), 33

[78]

Feng X, Meitl M A, Bowen A M, et al. Competing fracture in kinetically controlled transfer printing. Langmuir, 2007, 23(25), 12555

[79]

Yan Z, Pan T, Xue M, et al. Thermal release transfer printing for stretchable conformal bioelectronics. Adv Sci, 2017, 4(11), 1700251

[80]

Park K I, Lee S Y, Kim S, et al. Bendable and transparent barium titanate capacitors on plastic substrates for high performance flexible ferroelectric devices. Electrochem Solid State Lett, 2010, 13(7), G57

[81]

Yao G, Pan T, Yan Z, et al. Tailoring the energy band in flexible photodetector based on transferred ITO/Si heterojunction via interface engineering. Nanoscale, 2018, 10(8), 3893

[82]

Feng X, Yang B D, Liu Y, et al. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano, 2011, 5(4), 3326

[83]

Chen L, Nagy J, M Reano R M, et al. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon. Opt Mater Express, 2016, 6(7), 2460

[84]

Liang W, Gao M, Lu C, et al. Enhanced metal-insulator transition performance in scalable vanadium dioxide thin films prepared using a moisture-assisted chemical solution approach. ACS Appl Mater Interfaces, 2018, 10(9), 8341

[85]

Liao F, Yan Z, Liang W, et al. Tuning the metal-insulator transition of vanadium dioxide thin films using a stretchable structure. J Alloys Compd, 2017, 705, 468

[86]

Liao F, Zhu Z, Yan Z, et al. Ultrafast response flexible breath sensor based on vanadium dioxide. J Breath Res, 2017, 11(3), 036002

[87]

Liao F, Lu C, Yao G, et al. Ultrasensitive flexible temperature-mechanical dual-parameter sensor based on vanadium dioxide films. IEEE Electron Device Lett, 2017, 38(8), 1128

[88]

Gao M, Qi Z, Lu C, et al. Interplay between extra charge injection and lattice evolution in VO2/CH3NH3PbI3 heterostructure. Phys Status Solidi RRL, 2018, 12(4), 1700416

[89]

Kang Z, Gao M, Lu C, et al. Thickness-modulated temperature dependent optical properties of VO2 thin films. Appl Phys A, 2019, 125, 63

[90]

Lu C, Liang W, G Min G, et al. Terahertz transmittance of cobalt-doped VO2 thin film: investigated by terahertz spectroscopy and effective medium theory. IEEE Trans THz Sci Technol, 2019, 9(2), 177

[91]

Liang W, Z Zhuo Z, Ji Y, et al. In-plane orientation-dependent metal-insulator transition in vanadium dioxide induced by sublattice strain engineering. npj Quantum Mater, 2019, 4, 39

[92]

Fratzl P, Barth F G. Biomaterial systems for mechanosensing and actuation. Nature, 2009, 462(7272), 442

[93]

Schlom D G, Chen L Q, Fennie C J, et al. Elastic strain engineering of ferroic oxides. MRS Bulletin, 2014, 39(2), 118

[94]

Chen A, Su Q, Han H, et al. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv Mater, 2018, 31(4), 1803241

[95]

Bridoux G, Barzola-Quiquia J, Bern F, et al. An alternative route towards micro- and nano-patterning of oxide films. Nanotechnology, 2012, 23(8), 085302

[96]

Bakaul S R, Serrao C R, Lee M, et al. Single crystal functional oxides on silicon. Nat Commun, 2016, 7, 10547

[97]

Shen L, Wu L, Sheng Q, et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. Adv Mater, 2017, 29(33), 1702411

[98]

Qi Y, Jafferis N T, Lyons K, et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett, 2010, 10(2), 524

[99]

Qi Y, Kim J, Nguyen T D, et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett, 2011, 11(3), 1331

[100]

Zhang Y, Shen L, Liu M, et al. Flexible quasi-two-dimensional CoFe2O4 epitaxial thin films for continuous strain tuning of magnetic properties. ACS Nano, 2017, 11(8), 8002

[101]

Ji D, Cai S, Paudel T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 2019, 570, 87

[102]

Lu D, Baek D J, Hong S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater, 2016, 15(12), 1255

[103]

Wang H, Shen L, Duan T, et al. Integration of both invariable and tunable microwave magnetisms in a single flexible La0.67Sr0.33MnO3 thin film. ACS Appl Mater Interfaces, 2019, 11(25), 22677

[104]

Dong G, Li S, Yao M, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science, 2019, 366(6464), 475

[1]

Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001

[2]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[3]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[4]

Xian Huang. Materials and applications of bioresorbable electronics. J. Semicond., 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003

[5]

Zhong Ma, Desheng Kong, Lijia Pan, Zhenan Bao. Skin-inspired electronics: emerging semiconductor devices and systems. J. Semicond., 2020, 41(0): 000000.

[6]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[7]

Gang Xiang. Epitaxial lift-off of ferromagnetic (Ga,Mn)As nanoflakes for van der Waals heterostructures. J. Semicond., 2019, 40(8): 080203. doi: 10.1088/1674-4926/40/8/080203

[8]

Zhou Wang, Xinyi Shan, Xugao Cui, Pengfei Tian. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display. J. Semicond., 2020, 41(0): -1.

[9]

Kang Xiangning, Bao Kui, Chen Zhizhong, Xu Ke, Zhang Bei, Yu Tongjun, Nie Ruijuan, Zhang Guoyi. Vertical Electrode Structure GaN Based Light Emitting Diodes. J. Semicond., 2007, 28(S1): 482.

[10]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[11]

Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201

[12]

Zhang Xiaoying, Ruan Yujiao, Chen Songyan, Li Cheng. GaN/metal/Si heterostructure fabricated by metal bonding and laser lift-off. J. Semicond., 2009, 30(12): 123001. doi: 10.1088/1674-4926/30/12/123001

[13]

Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005

[14]

Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509

[15]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[16]

Chen Weihua, Hu Xiaodong, Zhang Bei, Li Zilan, Pan Yaobo, Hu Chengyu, Wang Qi, Lu Yu, Lu Min, Yang Zhijian, Zhang Guoyi. TEM Analysis on GaN/AlGaN SLS. J. Semicond., 2005, 26(S1): 28.

[17]

Lifeng Yin. Magnetic LEGO: van der Vaals interlayer magnetism. J. Semicond., 2019, 40(12): 120201. doi: 10.1088/1674-4926/40/12/120201

[18]

Xie Hongyun, Chen Liang, Shen Pei, Sun Botao, Wang Renqing, Xiao Ying, You Yunxia, Zhang Wanrong. Analysis of a wavelength selectable cascaded DFB laser based on the transfer matrix method. J. Semicond., 2010, 31(6): 064006. doi: 10.1088/1674-4926/31/6/064006

[19]

Fu Lei, Liu Yunqi, Zhu Daoben. Molecular Electronics. J. Semicond., 2003, 24(S1): 22.

[20]

Li Hongli, Sun Yicai, Wang Wei, Harry Hutchinson. Neurocomputing van der Pauw function for the measurement of a semiconductor's resistivity without use of the learning rate of weight vector regulation. J. Semicond., 2011, 32(12): 122002. doi: 10.1088/1674-4926/32/12/122002

Search

Advanced Search >>

Article Metrics

Article views: 40 Times PDF downloads: 4 Times Cited by: 0 Times

History

Manuscript received: 22 December 2019 Manuscript revised: 21 January 2020 Online: Accepted Manuscript: 22 February 2020 Uncorrected proof: 13 March 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图