J. Semicond. > Volume 41?>?Issue 7?> Article Number: 072902

Metal–insulator transition in few-layered GaTe transistors

Xiuxin Xia 1, 2, , Xiaoxi Li 1, 2, , and Hanwen Wang 1, 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) materials have triggered enormous interest thanks to their interesting properties and potential applications, ranging from nanoelectronics to energy catalysis and biomedicals. In addition to other widely investigated 2D materials, GaTe, a layered material with a direct band gap of ~1.7 eV, is of importance for applications such as optoelectronics. However, detailed information on the transport properties of GaTe is yet to be explored, especially at low temperatures. Here, we report on electrical transport measurements on few-layered GaTe field effect transistors (FETs) encapsulated by h-BN at different temperatures. We find that by tuning the carrier density, ambipolar transport was realized in GaTe devices, and an electrical-field-induced metal to insulator transition (MIT) was observed when it was hole doped. The mobilities of GaTe devices show a clear dependence on temperature and increase with the decrease of temperature, reaching ~1200 cm2V?1s?1 at 3 K. Our findings may inspire further electronic studies in devices based on GaTe.

Key words: metal-insulator transitiongate tunableGaTefield effect transistors

Abstract: Two-dimensional (2D) materials have triggered enormous interest thanks to their interesting properties and potential applications, ranging from nanoelectronics to energy catalysis and biomedicals. In addition to other widely investigated 2D materials, GaTe, a layered material with a direct band gap of ~1.7 eV, is of importance for applications such as optoelectronics. However, detailed information on the transport properties of GaTe is yet to be explored, especially at low temperatures. Here, we report on electrical transport measurements on few-layered GaTe field effect transistors (FETs) encapsulated by h-BN at different temperatures. We find that by tuning the carrier density, ambipolar transport was realized in GaTe devices, and an electrical-field-induced metal to insulator transition (MIT) was observed when it was hole doped. The mobilities of GaTe devices show a clear dependence on temperature and increase with the decrease of temperature, reaching ~1200 cm2V?1s?1 at 3 K. Our findings may inspire further electronic studies in devices based on GaTe.

Key words: metal-insulator transitiongate tunableGaTefield effect transistors



References:

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666

[2]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419

[3]

Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 1

[4]

Saito Y, Iwasa Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 2015, 9(3), 3192

[5]

Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13(7), 554

[6]

Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett, 1992, 60(18), 2204

[7]

Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191), 1489

[8]

Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13(7), 544

[9]

Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5(8), eaaw8904

[10]

Mott N. Metal–insulator transition. Rev Mod Phys, 1968, 40(4), 677

[11]

Kravchenko S, Simonian D, Sarachik M, et al. Electric field scaling at a B = 0 metal-insulator transition in two dimensions. Phys Rev Lett, 1996, 77(24), 4938

[12]

Frenzel A J, McLeod A S, Wang D Z R, et al. Infrared nanoimaging of the metal–insulator transition in the charge-density-wave van der Waals material 1T-TaS2. Phys Rev B, 2018, 97(3), 035111

[13]

Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9), 815

[14]

Ponomarenko L, Geim A, Zhukov A, et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat Phys, 2011, 7(12), 958

[15]

Cen C, Thiel S, Hammerl G, et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat Mater, 2008, 7(4), 298

[16]

Wu C L, Yuan H, Li Y, et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett, 2018, 18(4), 2387

[17]

Patil P, Ghosh S, Wasala M, et al. Evidence of metal-insulator transition in 2D Van der Waals layers of copper indium selenide (CuIn7Se11). APS Meeting Abstracts, 2019

[18]

Duvjir G, Choi B K, Jang I, et al. Emergence of a metal–insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett, 2018, 18(9), 5432

[19]

Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43

[20]

Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8(1), 752

[21]

Huang S, Tatsumi Y, Ling X, et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 2016, 10(9), 8964

[22]

Kang J, Sangwan V K, Lee H S, et al. Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics, 2018, 5(10), 3996

[23]

Wang Z, Safdar M, Mirza M, et al. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 2015, 7(16), 7252

[24]

Wang H, Chen M L, Zhu M, et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat Commun, 2019, 10(1), 1

[25]

Cai H, Chen B, Wang G, et al. Synthesis of highly anisotropic semiconducting GaTe nanomaterials and emerging properties enabled by epitaxy. Adv Mater, 2017, 29(8), 1605551

[26]

Wang Z, Xu K, Li Y, et al. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano, 2014, 8(5), 4859

[27]

Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater, 2014, 1(1), 011002

[28]

Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6(12), 866

[29]

Cui Y, Xin R, Yu Z, et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv Mater, 2015, 27(35), 5230

[30]

Movva H C, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 2015, 9(10), 10402

[31]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3), 147

[32]

Ovchinnikov D, Allain A, Huang Y S, et al. Electrical transport properties of single-layer WS2. ACS Nano, 2014, 8(8), 8174

[33]

Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10), 722

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666

[2]

Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419

[3]

Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 1

[4]

Saito Y, Iwasa Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 2015, 9(3), 3192

[5]

Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13(7), 554

[6]

Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett, 1992, 60(18), 2204

[7]

Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191), 1489

[8]

Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13(7), 544

[9]

Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5(8), eaaw8904

[10]

Mott N. Metal–insulator transition. Rev Mod Phys, 1968, 40(4), 677

[11]

Kravchenko S, Simonian D, Sarachik M, et al. Electric field scaling at a B = 0 metal-insulator transition in two dimensions. Phys Rev Lett, 1996, 77(24), 4938

[12]

Frenzel A J, McLeod A S, Wang D Z R, et al. Infrared nanoimaging of the metal–insulator transition in the charge-density-wave van der Waals material 1T-TaS2. Phys Rev B, 2018, 97(3), 035111

[13]

Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9), 815

[14]

Ponomarenko L, Geim A, Zhukov A, et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat Phys, 2011, 7(12), 958

[15]

Cen C, Thiel S, Hammerl G, et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat Mater, 2008, 7(4), 298

[16]

Wu C L, Yuan H, Li Y, et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett, 2018, 18(4), 2387

[17]

Patil P, Ghosh S, Wasala M, et al. Evidence of metal-insulator transition in 2D Van der Waals layers of copper indium selenide (CuIn7Se11). APS Meeting Abstracts, 2019

[18]

Duvjir G, Choi B K, Jang I, et al. Emergence of a metal–insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett, 2018, 18(9), 5432

[19]

Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43

[20]

Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8(1), 752

[21]

Huang S, Tatsumi Y, Ling X, et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 2016, 10(9), 8964

[22]

Kang J, Sangwan V K, Lee H S, et al. Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics, 2018, 5(10), 3996

[23]

Wang Z, Safdar M, Mirza M, et al. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 2015, 7(16), 7252

[24]

Wang H, Chen M L, Zhu M, et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat Commun, 2019, 10(1), 1

[25]

Cai H, Chen B, Wang G, et al. Synthesis of highly anisotropic semiconducting GaTe nanomaterials and emerging properties enabled by epitaxy. Adv Mater, 2017, 29(8), 1605551

[26]

Wang Z, Xu K, Li Y, et al. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano, 2014, 8(5), 4859

[27]

Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater, 2014, 1(1), 011002

[28]

Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6(12), 866

[29]

Cui Y, Xin R, Yu Z, et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv Mater, 2015, 27(35), 5230

[30]

Movva H C, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 2015, 9(10), 10402

[31]

Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3), 147

[32]

Ovchinnikov D, Allain A, Huang Y S, et al. Electrical transport properties of single-layer WS2. ACS Nano, 2014, 8(8), 8174

[33]

Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10), 722

[1]

Fuyou Liao, Hongjuan Wang, Xiaojiao Guo, Zhongxun Guo, Ling Tong, Antoine Riaud, Yaochen Sheng, Lin Chen, Qingqing Sun, Peng Zhou, David Wei Zhang, Yang Chai, Xiangwei Jiang, Yan Liu, Wenzhong Bao. Charge transport and quantum confinement in MoS2 dual-gated transistors. J. Semicond., 2020, 41(7): 072904. doi: 10.1088/1674-4926/41/7/072904

[2]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[3]

Meile Wu, Xiaoshi Jin, Rongyan Chuai, Xi Liu, Jong-Ho Lee. Simulation study on short channel double-gate junctionless field-effect transistors. J. Semicond., 2013, 34(3): 034004. doi: 10.1088/1674-4926/34/3/034004

[4]

Jia Li, Cui Yu, Li Wang, Qingbin Liu, Zezhao He, Shujun Cai, Zhihong Feng. Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric. J. Semicond., 2014, 35(7): 074006. doi: 10.1088/1674-4926/35/7/074006

[5]

M Errai, A El Kaaouachi, H El Idrissi. Electrical properties of Ge:Ga near the metal-insulator transition. J. Semicond., 2015, 36(6): 062001. doi: 10.1088/1674-4926/36/6/062001

[6]

Wei Ye, Wei Ren, Peng Shi, Zhuangde Jiang. Effect of annealing temperature of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors. J. Semicond., 2016, 37(7): 074007. doi: 10.1088/1674-4926/37/7/074007

[7]

M. W. Akram, Bahniman Ghosh, Punyasloka Bal, Partha Mondal. P-type double gate junctionless tunnel field effect transistor. J. Semicond., 2014, 35(1): 014002. doi: 10.1088/1674-4926/35/1/014002

[8]

M. W. Akram, Bahniman Ghosh. Analog performance of double gate junctionless tunnel field effect transistor. J. Semicond., 2014, 35(7): 074001. doi: 10.1088/1674-4926/35/7/074001

[9]

Huifang Xu. Two dimensional analytical model for a negative capacitance double gate tunnel field effect transistor with ferroelectric gate dielectric. J. Semicond., 2018, 39(10): 104004. doi: 10.1088/1674-4926/39/10/104004

[10]

Fan Xue, Li Ping, Li Wei, Zhang Bin, Xie Xiaodong, Wang Gang, Hu Bin, Zhai Yahong. Gate-enclosed NMOS transistors. J. Semicond., 2011, 32(8): 084002. doi: 10.1088/1674-4926/32/8/084002

[11]

Xinyu Wu, Weihua Han, Xiaosong Zhao, Yangyan Guo, Xiaodi Zhang, Fuhua Yang. Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors. J. Semicond., 2020, 41(7): 072905. doi: 10.1088/1674-4926/41/7/072905

[12]

Liu Xueqiang, Bi Weihong, Zhang Tong. Low voltage copper phthalocyanine organic thin film transistors with a polymer layer as the gate insulator. J. Semicond., 2010, 31(12): 124007. doi: 10.1088/1674-4926/31/12/124007

[13]

Zhang Xianjun, Yang Yintang, Chai Changchun, Duan Baoxing, Song Kun, Chen Bin. Effect of a gate buffer layer on the performance of a 4H-SiC Schottky barrier field-effect transistor. J. Semicond., 2012, 33(7): 074003. doi: 10.1088/1674-4926/33/7/074003

[14]

Shoubhik Gupta, Bahniman Ghosh, Shiromani Balmukund Rahi. Compact analytical model of double gate junction-less field effect transistor comprising quantum-mechanical effect. J. Semicond., 2015, 36(2): 024001. doi: 10.1088/1674-4926/36/2/024001

[15]

Bai Yu, Khizar-ul-Haq, M.A.Khan, Jiang Xueyin, Zhang Zhilin. OTFT with Bilayer Gate Insulator and Modificative Electrode. J. Semicond., 2008, 29(4): 650.

[16]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

[17]

Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh. A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel forultra low power applications. J. Semicond., 2016, 37(5): 054002. doi: 10.1088/1674-4926/37/5/054002

[18]

Cui Ning, Liang Renrong, Wang Jing, Zhou Wei, Xu Jun. A PNPN tunnel field-effect transistor with high-k gate and low-k fringe dielectrics. J. Semicond., 2012, 33(8): 084004. doi: 10.1088/1674-4926/33/8/084004

[19]

Kai Han, Xueli Ma, Jinjuan Xiang, Hong Yang, Wenwu Wang. Effect of low temperature annealing on the electrical properties of an MOS capacitor with a HfO2 dielectric and a TiN metal gate. J. Semicond., 2013, 34(11): 114007. doi: 10.1088/1674-4926/34/11/114007

[20]

Hailong Wang, Jialin Ma, Qiqi Wei, Jianhua Zhao. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs. J. Semicond., 2020, 41(7): 072903. doi: 10.1088/1674-4926/41/7/072903

Search

Advanced Search >>

GET CITATION

X X Xia, X X Li, H W Wang, Metal–insulator transition in few-layered GaTe transistors[J]. J. Semicond., 2020, 41(7): 072902. doi: 10.1088/1674-4926/41/7/072902.

Export: BibTex EndNote

Article Metrics

Article views: 202 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 27 March 2020 Manuscript revised: 22 April 2020 Online: Uncorrected proof: 02 June 2020 Published: 02 July 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图