J. Semicond. > Volume 41?>?Issue 5?> Article Number: 051201

Recent progress in developing efficient monolithic all-perovskite tandem solar cells

Yurui Wang ?, , Mei Zhang ?, , Ke Xiao , Renxing Lin , Xin Luo , Qiaolei Han and Hairen Tan ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption, long carrier diffusion lengths, tunable bandgaps, and low temperature processing. Single-junction perovskite solar cells (PSCs) have achieved a boost of the power conversion efficiency (PCE) from 3.8% to 25.2% in just a decade. With the continuous growth of PCE in single-junction PSCs, exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs. In this review, we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell. We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device: tunnel recombination junction, wide-bandgap top subcell, and narrow-bandgap bottom subcell. Finally, we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.

Key words: perovskite solar cellsmonolithic tandemmonolithic all-perovskite tandem solar cellstability

Abstract: Organic–inorganic halide perovskites have received widespread attention thanks to their strong light absorption, long carrier diffusion lengths, tunable bandgaps, and low temperature processing. Single-junction perovskite solar cells (PSCs) have achieved a boost of the power conversion efficiency (PCE) from 3.8% to 25.2% in just a decade. With the continuous growth of PCE in single-junction PSCs, exploiting of monolithic all-perovskite tandem solar cells is now an important strategy to go beyond the efficiency available in single-junction PSCs. In this review, we first introduce the structure and operation mechanism of monolithic all-perovskite tandem solar cell. We then summarize recent progress in monolithic all-perovskite tandem solar cells from the perspectives of different structural units in the device: tunnel recombination junction, wide-bandgap top subcell, and narrow-bandgap bottom subcell. Finally, we provide our insights into the challenges and scientific issues remaining in this rapidly developing research field.

Key words: perovskite solar cellsmonolithic tandemmonolithic all-perovskite tandem solar cellstability



References:

[1]

Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 2019, 567(7749), 511

[2]

Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396), 1442

[3]

Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355(6326), 722

[4]

Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden –Popper perovskite solar cells. Nature, 2016, 536(7616), 312

[5]

Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234

[6]

Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10(3), 1903083

[7]

Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9(1), 1607

[8]

Han Q, Wei Y, Lin R, et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb –Sn low-bandgap perovskite solar cells. Sci Bull, 2019, 64(19), 1399

[9]

Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17), 6050

[10]

National Renewable Energy Laboratory. Best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2019

[11]

Green M A, Dunlop E D, Levi D H, et al. Solar cell efficiency tables (version 54). Prog Photovolt Res Appl, 2019, 27(7), 565

[12]

Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3), 510

[13]

Geisz J F, Steiner M A, Jain N, et al. Building a six-junction inverted metamorphic concentrator solar cell. IEEE J Photovolt, 2017, 8(2), 626

[14]

Meillaud F, Shah A, Droz C, et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 2006, 90(18/19), 2952

[15]

Contreras M A, Mansfield L M, Egaas B, et al. Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog Photovolt Res Appl, 2012, 20(7), 843

[16]

Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407), 1094

[17]

Che X, Li Y, Qu Y, et al. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat Energy, 2018, 3(5), 422

[18]

Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 2018, 12(3), 131

[19]

Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140

[20]

Anaya M, Lozano G, Calvo M E, et al. ABX3 perovskites for tandem solar cells. Joule, 2017, 1(4), 769

[21]

Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746

[22]

Yu Y, Wang C, Grice C R, et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett, 2017, 2(5), 1177

[23]

Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828

[24]

Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3), 982

[25]

Xu G, Bi P, Wang S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 2018, 28(42), 1804427

[26]

Wei M, Xiao K, Walters G, et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater, 2020, 1907058

[27]

Li C, Song Z, Zhao D, et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv Energy Mater, 2019, 9(3), 1803135

[28]

Liu X, Yang Z, Chueh C C, et al. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A, 2016, 4(46), 17939

[29]

Yang Z, Rajagopal A, Chueh C C, et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater, 2016, 28(40), 8990

[30]

Zhao B, Abdi-Jalebi M, Tabachnyk M, et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv Mater, 2017, 29(2), 1604744

[31]

Zhu H L, Choy W C H. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2018, 2(10), 1800146

[32]

Bush K A, Palmstrom A F, Zhengshan J Y, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009

[33]

Werner J, Barraud L, Walter A, et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2016, 1(2), 474

[34]

Chen B, Zhengshan J Y, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4, 850

[35]

Werner J, Weng C H, Walter A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett, 2016, 7(1), 161

[36]

Duong T, Wu Y, Shen H, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 2017, 7(14), 1700228

[37]

Pisoni S, Fu F, Feurer T, et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J Mater Chem A, 2017, 5(26), 13639

[38]

Shen H, Peng J, Jacobs D, et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ Sci, 2018, 11(2), 394

[39]

Todorov T, Gershon T, Gunawan O, et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 2014, 105(17), 173902

[40]

Han Q, Hsieh Y T, Meng L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science, 2018, 361(6405), 904

[41]

Fu F, Feurer T, Weiss T P, et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy, 2016, 2(1), 1690

[42]

Bailie C D, Christoforo M G, Mailoa J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci, 2015, 8(3), 956

[43]

Zeng Q, Liu L, Xiao Z, et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 2019, 64(13), 885

[44]

Saha U, Alam M K. Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. RSC Adv, 2017, 7(8), 4806

[45]

Li Y, Hu H, Chen B, et al. Solution-processed perovskite-kesterite reflective tandem solar cells. Sol Energy, 2017, 155, 35

[46]

Lee H, Lee C. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv Energy Mater, 2018, 8(11), 1702197

[47]

Tanabe K. A Review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies, 2009, 2(3), 504

[48]

Ameri T, Li N, Brabec C J. Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci, 2013, 6(8), 2390

[49]

Yu Z J, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nat Energy, 2016, 1(11), 16137

[50]

Celik I, Philips A B, Song Z, et al. Energy payback time (EPBT) and energy return on energy invested (eroi) of perovskite tandem photovoltaic solar cells. IEEE J Photovoltaics, 2017, 8(1), 305

[51]

Zhengshan J Y, Carpenter J V, Holman Z C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat Energy, 2018, 3(9), 747

[52]

Heo J H, Im S H. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater, 2016, 28(25), 5121

[53]

Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314), 861

[54]

Lin R, Xiao K, Qin Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy, 2019, 4(10), 864

[55]

Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview Adv Mater Interfaces, 2018, 5(1), 1700731

[56]

Eperon G E, H?rantner M T, Snaith H J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat Rev Chem, 2017, 1(12), 0095

[57]

Araújo G L, Martí A. Absolute limiting efficiencies for photovoltaic energy conversion. Sol Energy Mater Sol Cells, 1994, 33(2), 213

[58]

H?rantner M T, Leijtens T, Ziffer M E, et al. The potential of multijunction perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2506

[59]

Unger E L, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5(23), 11401

[60]

Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4), 1764

[61]

Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30(21), 1800855

[62]

Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3(1), 191

[63]

Palmstrom A F, Eperon G E, Leijtens T, et al. Enabling flexible all-perovskite tandem solar cells. Joule, 2019, 3(9), 2193

[64]

Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309), 206

[65]

Park Y H, Jeong I, Bae S, et al. Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv Funct Mater, 2017, 27(16), 1605988

[66]

Yadav P, Dar M I, Arora N, et al. The role of rubidium in multiple-cation-based high-efficiency perovskite solar cells. Adv Mater, 2017, 29(40), 1701077

[67]

Zhang M, Yun J S, Ma Q, et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett, 2017, 2(2), 438

[68]

Liao W, Zhao D, Yu Y, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc, 2016, 138(38), 12360

[69]

Im J, Stoumpos C C, Jin H, et al. Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1– xPb xI3. J Phys Chem Lett, 2015, 6(17), 3503

[70]

Prasanna R, Gold-Parker A, Leijtens T, et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc, 2017, 139(32), 11117

[71]

Yang Z, Chueh C C, Liang P W, et al. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328

[72]

Forgács D, Gil-Escrig L, Pérez-Del-Rey D, et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater, 2017, 7(8), 1602121

[73]

Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140

[74]

Jiang F, Liu T, Luo B, et al. A two-terminal perovskite/perovskite tandem solar cell. J Mater Chem A, 2016, 4(4), 1208

[75]

Leijtens T, Prasanna R, Bush K A, et al. Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain Energy Fuels, 2018, 2(11), 2450

[76]

Zhao D, Chen C, Wang C, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy, 2018, 3(12), 1093

[77]

Tong J, Song Z, Kim D H, et al. Carrier lifetimes of > 1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439), 475

[78]

Prasanna R, Leijtens T, Dunfield S P, et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat Energy, 2019, 4(11), 939

[79]

Sheng R, H?rantner M T, Wang Z, et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. J Phys Chem C, 2017, 121(49), 27256

[80]

?vila J, Momblona C, Boix P, et al. High voltage vacuum-deposited CH3NH3Pb3–CH3NH3PbI3 tandem solar cells. Energy Environ Sci, 2018, 11(11), 3292

[81]

Yan Y. All-perovskite tandem solar cell showing unprecedentedly high open-circuit voltage. Joule, 2018, 2(11), 2206

[82]

Zhao D, Wang C, Song Z, et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett, 2018, 3(2), 305

[83]

Abdollahi B, Hossain I M, Jakoby M, et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv Energy Mater, 2020, 10(5), 1902583

[84]

Braly I L, Stoddard R J, Rajagopal A, et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett, 2017, 2(8), 1841

[85]

Stoddard R J, Rajagopal A, Palmer R L, et al. Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett, 2018, 3(6), 1261

[86]

Saparov B, Mitzi D B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 2016, 116(7), 4558

[87]

Zhao D, Yu Y, Wang C, et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy, 2017, 2(4), 17018

[88]

Hao F, Stoumpos C C, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 2015, 137(35), 11445

[89]

Zhou Y, Yang M, Wu W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A, 2015, 3(15), 8178

[90]

Yang Z, Yu Z, Wei H, et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat Commun, 2019, 10(1), 4498

[1]

Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature, 2019, 567(7749), 511

[2]

Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396), 1442

[3]

Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355(6326), 722

[4]

Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden –Popper perovskite solar cells. Nature, 2016, 536(7616), 312

[5]

Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234

[6]

Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10(3), 1903083

[7]

Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9(1), 1607

[8]

Han Q, Wei Y, Lin R, et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb –Sn low-bandgap perovskite solar cells. Sci Bull, 2019, 64(19), 1399

[9]

Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17), 6050

[10]

National Renewable Energy Laboratory. Best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2019

[11]

Green M A, Dunlop E D, Levi D H, et al. Solar cell efficiency tables (version 54). Prog Photovolt Res Appl, 2019, 27(7), 565

[12]

Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3), 510

[13]

Geisz J F, Steiner M A, Jain N, et al. Building a six-junction inverted metamorphic concentrator solar cell. IEEE J Photovolt, 2017, 8(2), 626

[14]

Meillaud F, Shah A, Droz C, et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 2006, 90(18/19), 2952

[15]

Contreras M A, Mansfield L M, Egaas B, et al. Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog Photovolt Res Appl, 2012, 20(7), 843

[16]

Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407), 1094

[17]

Che X, Li Y, Qu Y, et al. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat Energy, 2018, 3(5), 422

[18]

Cheng P, Li G, Zhan X, et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics, 2018, 12(3), 131

[19]

Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140

[20]

Anaya M, Lozano G, Calvo M E, et al. ABX3 perovskites for tandem solar cells. Joule, 2017, 1(4), 769

[21]

Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746

[22]

Yu Y, Wang C, Grice C R, et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett, 2017, 2(5), 1177

[23]

Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828

[24]

Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3), 982

[25]

Xu G, Bi P, Wang S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 2018, 28(42), 1804427

[26]

Wei M, Xiao K, Walters G, et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater, 2020, 1907058

[27]

Li C, Song Z, Zhao D, et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv Energy Mater, 2019, 9(3), 1803135

[28]

Liu X, Yang Z, Chueh C C, et al. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A, 2016, 4(46), 17939

[29]

Yang Z, Rajagopal A, Chueh C C, et al. Stable low-bandgap Pb–Sn binary perovskites for tandem solar cells. Adv Mater, 2016, 28(40), 8990

[30]

Zhao B, Abdi-Jalebi M, Tabachnyk M, et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv Mater, 2017, 29(2), 1604744

[31]

Zhu H L, Choy W C H. Crystallization, properties, and challenges of low-bandgap Sn–Pb binary perovskites. Sol RRL, 2018, 2(10), 1800146

[32]

Bush K A, Palmstrom A F, Zhengshan J Y, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009

[33]

Werner J, Barraud L, Walter A, et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2016, 1(2), 474

[34]

Chen B, Zhengshan J Y, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4, 850

[35]

Werner J, Weng C H, Walter A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2. J Phys Chem Lett, 2016, 7(1), 161

[36]

Duong T, Wu Y, Shen H, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater, 2017, 7(14), 1700228

[37]

Pisoni S, Fu F, Feurer T, et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J Mater Chem A, 2017, 5(26), 13639

[38]

Shen H, Peng J, Jacobs D, et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ Sci, 2018, 11(2), 394

[39]

Todorov T, Gershon T, Gunawan O, et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl Phys Lett, 2014, 105(17), 173902

[40]

Han Q, Hsieh Y T, Meng L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science, 2018, 361(6405), 904

[41]

Fu F, Feurer T, Weiss T P, et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy, 2016, 2(1), 1690

[42]

Bailie C D, Christoforo M G, Mailoa J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci, 2015, 8(3), 956

[43]

Zeng Q, Liu L, Xiao Z, et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 2019, 64(13), 885

[44]

Saha U, Alam M K. Proposition and computational analysis of a kesterite/kesterite tandem solar cell with enhanced efficiency. RSC Adv, 2017, 7(8), 4806

[45]

Li Y, Hu H, Chen B, et al. Solution-processed perovskite-kesterite reflective tandem solar cells. Sol Energy, 2017, 155, 35

[46]

Lee H, Lee C. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv Energy Mater, 2018, 8(11), 1702197

[47]

Tanabe K. A Review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies, 2009, 2(3), 504

[48]

Ameri T, Li N, Brabec C J. Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci, 2013, 6(8), 2390

[49]

Yu Z J, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nat Energy, 2016, 1(11), 16137

[50]

Celik I, Philips A B, Song Z, et al. Energy payback time (EPBT) and energy return on energy invested (eroi) of perovskite tandem photovoltaic solar cells. IEEE J Photovoltaics, 2017, 8(1), 305

[51]

Zhengshan J Y, Carpenter J V, Holman Z C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat Energy, 2018, 3(9), 747

[52]

Heo J H, Im S H. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater, 2016, 28(25), 5121

[53]

Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314), 861

[54]

Lin R, Xiao K, Qin Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy, 2019, 4(10), 864

[55]

Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview Adv Mater Interfaces, 2018, 5(1), 1700731

[56]

Eperon G E, H?rantner M T, Snaith H J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat Rev Chem, 2017, 1(12), 0095

[57]

Araújo G L, Martí A. Absolute limiting efficiencies for photovoltaic energy conversion. Sol Energy Mater Sol Cells, 1994, 33(2), 213

[58]

H?rantner M T, Leijtens T, Ziffer M E, et al. The potential of multijunction perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2506

[59]

Unger E L, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5(23), 11401

[60]

Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4), 1764

[61]

Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30(21), 1800855

[62]

Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3(1), 191

[63]

Palmstrom A F, Eperon G E, Leijtens T, et al. Enabling flexible all-perovskite tandem solar cells. Joule, 2019, 3(9), 2193

[64]

Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309), 206

[65]

Park Y H, Jeong I, Bae S, et al. Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv Funct Mater, 2017, 27(16), 1605988

[66]

Yadav P, Dar M I, Arora N, et al. The role of rubidium in multiple-cation-based high-efficiency perovskite solar cells. Adv Mater, 2017, 29(40), 1701077

[67]

Zhang M, Yun J S, Ma Q, et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. ACS Energy Lett, 2017, 2(2), 438

[68]

Liao W, Zhao D, Yu Y, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc, 2016, 138(38), 12360

[69]

Im J, Stoumpos C C, Jin H, et al. Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1– xPb xI3. J Phys Chem Lett, 2015, 6(17), 3503

[70]

Prasanna R, Gold-Parker A, Leijtens T, et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc, 2017, 139(32), 11117

[71]

Yang Z, Chueh C C, Liang P W, et al. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328

[72]

Forgács D, Gil-Escrig L, Pérez-Del-Rey D, et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater, 2017, 7(8), 1602121

[73]

Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140

[74]

Jiang F, Liu T, Luo B, et al. A two-terminal perovskite/perovskite tandem solar cell. J Mater Chem A, 2016, 4(4), 1208

[75]

Leijtens T, Prasanna R, Bush K A, et al. Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain Energy Fuels, 2018, 2(11), 2450

[76]

Zhao D, Chen C, Wang C, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy, 2018, 3(12), 1093

[77]

Tong J, Song Z, Kim D H, et al. Carrier lifetimes of > 1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439), 475

[78]

Prasanna R, Leijtens T, Dunfield S P, et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat Energy, 2019, 4(11), 939

[79]

Sheng R, H?rantner M T, Wang Z, et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. J Phys Chem C, 2017, 121(49), 27256

[80]

?vila J, Momblona C, Boix P, et al. High voltage vacuum-deposited CH3NH3Pb3–CH3NH3PbI3 tandem solar cells. Energy Environ Sci, 2018, 11(11), 3292

[81]

Yan Y. All-perovskite tandem solar cell showing unprecedentedly high open-circuit voltage. Joule, 2018, 2(11), 2206

[82]

Zhao D, Wang C, Song Z, et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett, 2018, 3(2), 305

[83]

Abdollahi B, Hossain I M, Jakoby M, et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv Energy Mater, 2020, 10(5), 1902583

[84]

Braly I L, Stoddard R J, Rajagopal A, et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett, 2017, 2(8), 1841

[85]

Stoddard R J, Rajagopal A, Palmer R L, et al. Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett, 2018, 3(6), 1261

[86]

Saparov B, Mitzi D B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev, 2016, 116(7), 4558

[87]

Zhao D, Yu Y, Wang C, et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy, 2017, 2(4), 17018

[88]

Hao F, Stoumpos C C, Guo P, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 2015, 137(35), 11445

[89]

Zhou Y, Yang M, Wu W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A, 2015, 3(15), 8178

[90]

Yang Z, Yu Z, Wei H, et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat Commun, 2019, 10(1), 4498

[1]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[2]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

[3]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[4]

Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

[5]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[6]

Zhongti Sun, Xiwen Chen, Wanjian Yin. Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I). J. Semicond., 2020, 41(5): 052201. doi: 10.1088/1674-4926/41/5/052201

[7]

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

[8]

Jie Zhang, Shixin Hou, Renjie Li, Bingbing Chen, Fuhua Hou, Xinghua Cui, Jingjing Liu, Qi Wang, Pengyang Wang, Dekun Zhang, Ying Zhao, Xiaodan Zhang. I/P interface modification for stable and efficient perovskite solar cells. J. Semicond., 2020, 41(5): 052202. doi: 10.1088/1674-4926/41/5/052202

[9]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[10]

Zhizai Li, Zhiwen Jin. HI hydrolysis-derived intermediate as booster for CsPbI3 perovskite: from crystal structure, film fabrication to device performance. J. Semicond., 2020, 41(5): 051202. doi: 10.1088/1674-4926/41/5/051202

[11]

Wang Yikai, Wang Yi, Gong Wenchao, He Lenian. High Stability LDO with Large Output Current. J. Semicond., 2007, 28(7): 1149.

[12]

Kunpeng Jia, Jie Yang, Yajuan Su, Pengfei Nie, Jian Zhong, Qingqing Liang, Huilong Zhu. Stability analysis of a back-gate graphene transistor in air environment. J. Semicond., 2013, 34(8): 084004. doi: 10.1088/1674-4926/34/8/084004

[13]

Yan Senlin. Bifurcation and Dynamic Stability of a Light-InjectionMQW Semiconductor Laser. J. Semicond., 2006, 27(5): 910.

[14]

Wang Han, Ye Qing. Design and Stability Analysis of a 0.6V Supply CMOS Voltage Reference. J. Semicond., 2006, 27(8): 1508.

[15]

Caihong Yao, Chenwei Wang, Xinhuan Niu, Yan Wang, Shengjun Tian, Zichao Jiang, Yuling Liu. The stability of a novel weakly alkaline slurry of copper interconnection CMP for GLSI. J. Semicond., 2018, 39(2): 026002. doi: 10.1088/1674-4926/39/2/026002

[16]

Guodong Chen, Yuling Liu, Chenwei Wang, Weijuan Liu, Mengting Jiang, Haobo Yuan. Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization. J. Semicond., 2014, 35(8): 086001. doi: 10.1088/1674-4926/35/8/086001

[17]

Zhang Han, Chen Nuofu, Wang Yu, Yin Zhigang, Zhang Xingwang, Shi Huiwei, Wang Yanshuo, Huang Tianmao. Design and optimization of a monolithic GaInP/GaInAs tandem solar cell. J. Semicond., 2010, 31(8): 084009. doi: 10.1088/1674-4926/31/8/084009

[18]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[19]

Yamei Wu, Ruixia Yang, Hanmin Tian, Shuai Chen. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J. Semicond., 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[20]

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, Xingwang Zhang, Jingbi You. Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping. J. Semicond., 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201

Search

Advanced Search >>

GET CITATION

Y R Wang, M Zhang, K Xiao, R X Lin, X Luo, Q L Han, H R Tan, Recent progress in developing efficient monolithic all-perovskite tandem solar cells[J]. J. Semicond., 2020, 41(5): 051201. doi: 10.1088/1674-4926/41/5/051201.

Export: BibTex EndNote

Article Metrics

Article views: 711 Times PDF downloads: 166 Times Cited by: 0 Times

History

Manuscript received: 01 March 2020 Manuscript revised: 17 March 2020 Online: Accepted Manuscript: 17 April 2020 Uncorrected proof: 07 May 2020 Published: 13 May 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图