J. Semicond. > Volume 35?>?Issue 8?> Article Number: 081001

In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

Yuelin Wang , , Tie Li , Xiao Zhang , Hongjiang Zeng and Qinhua Jin

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Our investigation of in situ observations on electronic and mechanical properties of nano materials using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) with the help of traditional micro-electro-mechanical system (MEMS) technology has been reviewed. Thanks to the stability, continuity and controllability of the loading force from the electrostatic actuator and the sensitivity of the sensor beam, a MEMS tensile testing chip for accurate tensile testing in the nano scale is obtained. Based on the MEMS chips, the scale effect of Young's modulus in silicon has been studied and confirmed directly in a tensile experiment using a transmission electron microscope. Employing the nanomanipulation technology and FIB technology, Cu and SiC nanowires have been integrated into the tensile testing device and their mechanical, electronic properties under different stress have been achieved, simultaneously. All these will aid in better understanding the nano effects and contribute to the designation and application in nano devices.

Key words: MEMSnanoscaletensilein situTEM/SEM

Abstract: Our investigation of in situ observations on electronic and mechanical properties of nano materials using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) with the help of traditional micro-electro-mechanical system (MEMS) technology has been reviewed. Thanks to the stability, continuity and controllability of the loading force from the electrostatic actuator and the sensitivity of the sensor beam, a MEMS tensile testing chip for accurate tensile testing in the nano scale is obtained. Based on the MEMS chips, the scale effect of Young's modulus in silicon has been studied and confirmed directly in a tensile experiment using a transmission electron microscope. Employing the nanomanipulation technology and FIB technology, Cu and SiC nanowires have been integrated into the tensile testing device and their mechanical, electronic properties under different stress have been achieved, simultaneously. All these will aid in better understanding the nano effects and contribute to the designation and application in nano devices.

Key words: MEMSnanoscaletensilein situTEM/SEM



References:

[1]

Namazu T, Isono Y, Tanaka T. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM[J]. J Microelectromech Syst, 2000, 9: 450. doi: 10.1109/84.896765

[2]

Jin Q H, Li T, Wang Y L. Young's modulus size effect of SCS nanobeam by tensile testing in electron microscopy[J]. IEEE SENSORS Conf, Christchurch, New Zealand, 2009: 205.

[3]

Li D, Wu Y, Kim P. Thermal conductivity of individual silicon nanowires[J]. Appl Phys Lett, 2003, 83: 2934. doi: 10.1063/1.1616981

[4]

He R, Yang P. Giant piezoresistance effect in silicon nanowires[J]. Nature Nanotechnol, 2006, 1: 42. doi: 10.1038/nnano.2006.53

[5]

Ma D D D, Lee C S, Au F C K. Small-diameter silicon nanowire surfaces[J]. Science, 2003, 299: 1874. doi: 10.1126/science.1080313

[6]

Bell D J, Lu T J, Fleck N A. MEMS actuators and sensors:observations on their performance and selection for purpose[J]. J Micromech Microeng, 2005, 15: S153. doi: 10.1088/0960-1317/15/7/022

[7]

Kiuchi M, Matsui S, Isono Y. Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated nano tensile testing device[J]. J Microelectromech Syst, 2007, 16: 191. doi: 10.1109/JMEMS.2006.889663

[8]

Haque M, Saif M. In-situ tensile testing of nano-scale specimens in SEM and TEM Exp[J]. Mech, 2002, 42: 123.

[9]

Han J H, Saif M T. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films[J]. Rev Sci Instrum, 2006, 77: 045102. doi: 10.1063/1.2188368

[10]

Zhu Y, Espinosa H D. An electromechanical material testing system for in situ electron microscopy and applications[J]. P Natl Acad Sci USA, 2005, 102: 14503. doi: 10.1073/pnas.0506544102

[11]

Zhu Y, Ke C, Espinosa H D. Experimental techniques for the mechanical characterization of one-dimensional nanostructures[J]. Exp Mech, 2007, 47: 7. doi: 10.1007/s11340-006-0406-6

[12]

Peng B, Locascio M, Zapol P. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements[J]. Nature Nanotechnol, 2008, 3: 626. doi: 10.1038/nnano.2008.211

[13]

Zhang D, Breguet J M, Clavel R. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages[J]. J Microelectromech Syst, 2010, 19: 663. doi: 10.1109/JMEMS.2010.2044746

[14]

Zhang D, Drissen W, Breguet J M. A high-sensitivity and quasi-linear capacitive sensor for nanomechanical testing applications[J]. J Micromech Microeng, 2009, 19: 075003. doi: 10.1088/0960-1317/19/7/075003

[15]

Zeng H, Li T, Malte B. In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device[J]. J Phys D:Appl Phys, 2013, 46: 30551.

[16]

Jin Q, Wang Y, Li T. A MEMS device for in-situ TEM test of SCS nanobeam[J]. Sci China Ser E Technol Sci, 2008, 51: 1491. doi: 10.1007/s11431-008-0123-8

[17]

Jin Q, Li T, Wang Y. In-situ TEM tensile test of 90 nm thick < 110 > SCS beam using MEMS chip[J]. Proc IEEE Sensors, Lecce, Italy, 2008: 1116.

[18]

Guo Z, Wang X, Yang X. Relationships between young's modulus, hardness and orientation of grain in polycrystalline copper[J]. Acta Metall Sin, 2008, 44: 901.

[19]

Jin Q, Li T, Wang Y. Confirmation on the size-dependence of Young's modulus of single crystal silicon from the TEM tensile tests[J]. Proc IEEE Sensors, Hawaii, USA, 2010: 2530.

[20]

Jin Q, Li T, Zhou P. Mechanical researches on Young's modulus of SCS nanostructures[J]. J Nanomater, 2009, 2009: 319842.

[21]

Li X, Ono T, Wang Y L. Ultrathin single crystalline-silicon cantilever resonators:fabrication technology and significant specimen size effect on Young's modulus[J]. Appl Phys Lett, 2003, 83: 3081. doi: 10.1063/1.1618369

[22]

Sadeghian H, Yang C K, Goosen J F L. Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability[J]. Appl Phys Lett, 2009, 94: 221903. doi: 10.1063/1.3148774

[23]

Bartenwerfer M, Fatikow S, Zeng H. Individual nanowire handling for NEMS fabrication[J]. IEEE/ASME Int Conf on Advanced Intelligent Mechatronics, Kaohsiung, Taiwan, 2012: 562.

[24]

Cao A, Wei Y, Ma E. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires:molecular dynamics simulations[J]. Phys Rev B, 2008, 77: 195429. doi: 10.1103/PhysRevB.77.195429

[25]

Cao H, Wang L, Qiu Y. Synthesis and I-V properties of aligned copper nanowires[J]. Nanotechnology, 2006, 17: 1736. doi: 10.1088/0957-4484/17/6/032

[26]

John C, Kenneth J. Physics. 4th ed. New York:Wiley, 1998:755

[27]

Huang Q, Lilley C M, Bode M. Electrical failure analysis of Au nanowires[J]. 8th IEEE Conf on Nanotechnology, Arlington, TX, 2008: 549.

[28]

Perisanu S, Gouttenoire V, Vincent P. Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies[J]. Phys Rev B, 2008, 77: 165434. doi: 10.1103/PhysRevB.77.165434

[29]

Petrovic J J, Milewski J V, Rohr D L. Tensile mechanical-properties of SiC whiskers[J]. J Mater Sci, 1985, 20: 1167. doi: 10.1007/BF01026310

[30]

Wang J, Lu C, Wang Q. Understanding large plastic deformation of SiC nanowires at room temperature[J]. Europhys Lett, 2011, 95: 63003. doi: 10.1209/0295-5075/95/63003

[31]

Wang S, Chung D D L. Piezoresistivity in silicon carbide fibers[J]. J Electroceram, 2003, 10: 147. doi: 10.1023/B:JECR.0000011213.58831.45

[32]

Mukherjee M. Silicon carbide-materials, processing and applications in electronic devices[J]. Rijeka:In Tech, 2011: 369.

[33]

Shor J S, Bemis L, Kurtz A D. Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements[J]. IEEE Trans Electron Devices, 1994, 41: 661. doi: 10.1109/16.285013

[1]

Namazu T, Isono Y, Tanaka T. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM[J]. J Microelectromech Syst, 2000, 9: 450. doi: 10.1109/84.896765

[2]

Jin Q H, Li T, Wang Y L. Young's modulus size effect of SCS nanobeam by tensile testing in electron microscopy[J]. IEEE SENSORS Conf, Christchurch, New Zealand, 2009: 205.

[3]

Li D, Wu Y, Kim P. Thermal conductivity of individual silicon nanowires[J]. Appl Phys Lett, 2003, 83: 2934. doi: 10.1063/1.1616981

[4]

He R, Yang P. Giant piezoresistance effect in silicon nanowires[J]. Nature Nanotechnol, 2006, 1: 42. doi: 10.1038/nnano.2006.53

[5]

Ma D D D, Lee C S, Au F C K. Small-diameter silicon nanowire surfaces[J]. Science, 2003, 299: 1874. doi: 10.1126/science.1080313

[6]

Bell D J, Lu T J, Fleck N A. MEMS actuators and sensors:observations on their performance and selection for purpose[J]. J Micromech Microeng, 2005, 15: S153. doi: 10.1088/0960-1317/15/7/022

[7]

Kiuchi M, Matsui S, Isono Y. Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated nano tensile testing device[J]. J Microelectromech Syst, 2007, 16: 191. doi: 10.1109/JMEMS.2006.889663

[8]

Haque M, Saif M. In-situ tensile testing of nano-scale specimens in SEM and TEM Exp[J]. Mech, 2002, 42: 123.

[9]

Han J H, Saif M T. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films[J]. Rev Sci Instrum, 2006, 77: 045102. doi: 10.1063/1.2188368

[10]

Zhu Y, Espinosa H D. An electromechanical material testing system for in situ electron microscopy and applications[J]. P Natl Acad Sci USA, 2005, 102: 14503. doi: 10.1073/pnas.0506544102

[11]

Zhu Y, Ke C, Espinosa H D. Experimental techniques for the mechanical characterization of one-dimensional nanostructures[J]. Exp Mech, 2007, 47: 7. doi: 10.1007/s11340-006-0406-6

[12]

Peng B, Locascio M, Zapol P. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements[J]. Nature Nanotechnol, 2008, 3: 626. doi: 10.1038/nnano.2008.211

[13]

Zhang D, Breguet J M, Clavel R. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages[J]. J Microelectromech Syst, 2010, 19: 663. doi: 10.1109/JMEMS.2010.2044746

[14]

Zhang D, Drissen W, Breguet J M. A high-sensitivity and quasi-linear capacitive sensor for nanomechanical testing applications[J]. J Micromech Microeng, 2009, 19: 075003. doi: 10.1088/0960-1317/19/7/075003

[15]

Zeng H, Li T, Malte B. In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device[J]. J Phys D:Appl Phys, 2013, 46: 30551.

[16]

Jin Q, Wang Y, Li T. A MEMS device for in-situ TEM test of SCS nanobeam[J]. Sci China Ser E Technol Sci, 2008, 51: 1491. doi: 10.1007/s11431-008-0123-8

[17]

Jin Q, Li T, Wang Y. In-situ TEM tensile test of 90 nm thick < 110 > SCS beam using MEMS chip[J]. Proc IEEE Sensors, Lecce, Italy, 2008: 1116.

[18]

Guo Z, Wang X, Yang X. Relationships between young's modulus, hardness and orientation of grain in polycrystalline copper[J]. Acta Metall Sin, 2008, 44: 901.

[19]

Jin Q, Li T, Wang Y. Confirmation on the size-dependence of Young's modulus of single crystal silicon from the TEM tensile tests[J]. Proc IEEE Sensors, Hawaii, USA, 2010: 2530.

[20]

Jin Q, Li T, Zhou P. Mechanical researches on Young's modulus of SCS nanostructures[J]. J Nanomater, 2009, 2009: 319842.

[21]

Li X, Ono T, Wang Y L. Ultrathin single crystalline-silicon cantilever resonators:fabrication technology and significant specimen size effect on Young's modulus[J]. Appl Phys Lett, 2003, 83: 3081. doi: 10.1063/1.1618369

[22]

Sadeghian H, Yang C K, Goosen J F L. Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability[J]. Appl Phys Lett, 2009, 94: 221903. doi: 10.1063/1.3148774

[23]

Bartenwerfer M, Fatikow S, Zeng H. Individual nanowire handling for NEMS fabrication[J]. IEEE/ASME Int Conf on Advanced Intelligent Mechatronics, Kaohsiung, Taiwan, 2012: 562.

[24]

Cao A, Wei Y, Ma E. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires:molecular dynamics simulations[J]. Phys Rev B, 2008, 77: 195429. doi: 10.1103/PhysRevB.77.195429

[25]

Cao H, Wang L, Qiu Y. Synthesis and I-V properties of aligned copper nanowires[J]. Nanotechnology, 2006, 17: 1736. doi: 10.1088/0957-4484/17/6/032

[26]

John C, Kenneth J. Physics. 4th ed. New York:Wiley, 1998:755

[27]

Huang Q, Lilley C M, Bode M. Electrical failure analysis of Au nanowires[J]. 8th IEEE Conf on Nanotechnology, Arlington, TX, 2008: 549.

[28]

Perisanu S, Gouttenoire V, Vincent P. Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies[J]. Phys Rev B, 2008, 77: 165434. doi: 10.1103/PhysRevB.77.165434

[29]

Petrovic J J, Milewski J V, Rohr D L. Tensile mechanical-properties of SiC whiskers[J]. J Mater Sci, 1985, 20: 1167. doi: 10.1007/BF01026310

[30]

Wang J, Lu C, Wang Q. Understanding large plastic deformation of SiC nanowires at room temperature[J]. Europhys Lett, 2011, 95: 63003. doi: 10.1209/0295-5075/95/63003

[31]

Wang S, Chung D D L. Piezoresistivity in silicon carbide fibers[J]. J Electroceram, 2003, 10: 147. doi: 10.1023/B:JECR.0000011213.58831.45

[32]

Mukherjee M. Silicon carbide-materials, processing and applications in electronic devices[J]. Rijeka:In Tech, 2011: 369.

[33]

Shor J S, Bemis L, Kurtz A D. Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements[J]. IEEE Trans Electron Devices, 1994, 41: 661. doi: 10.1109/16.285013

[1]

Huang Qing'an, Liu Zutao, Li Weihua, Li Qiaoping. A Test System for the in situ Extraction of the Material Parameters of MEMS Thin Films. J. Semicond., 2006, 27(9): 1650.

[2]

Ou Yi, Shi Shali, Li Chaobo, Jiao Binbin, Chen Dapeng. Wet Etching and Releasing of MEMS. J. Semicond., 2006, 27(S1): 347.

[3]

Xu Yinglin, Liao Xiaoping. Design and fabrication of a terminating type MEMS microwave power sensor. J. Semicond., 2009, 30(4): 044010. doi: 10.1088/1674-4926/30/4/044010

[4]

Xu Yinglin, Liao Xiaoping. Thermal time constant of a terminating type MEMS microwave power sensor. J. Semicond., 2009, 30(10): 104006. doi: 10.1088/1674-4926/30/10/104006

[5]

Du Guangtao, Chen Xiangdong, Lin Qibin, Li Hui, Guo Huihui. MEMS magnetic field sensor based on silicon bridge structure. J. Semicond., 2010, 31(10): 104011. doi: 10.1088/1674-4926/31/10/104011

[6]

Liu Mengwei, Li Junhong, Ma Jun, Wang Chenghao. Design and fabrication of a MEMS Lamb wave device based on ZnO thin film. J. Semicond., 2011, 32(4): 044006. doi: 10.1088/1674-4926/32/4/044006

[7]

Shen Guangping, Wu Jian, Zhang Hua, Qin Ming, Huang Qing’an. Design of a 2D Thermal Wind Sensor Based on MEMS Process. J. Semicond., 2007, 28(11): 1830.

[8]

Liu Tong, Liao Xiaoping, Wang Debo. Sensitivity of MEMS microwave power sensor with the length of thermopile based on Fourier equivalent model. J. Semicond., 2011, 32(7): 074009. doi: 10.1088/1674-4926/32/7/074009

[9]

Jiang Zheng, Ding Guifu, Wang Yan, Zhang Dongmei, Wang Zhiming, Feng Jianzhi. A Teeterboard Pattern MEMS Permanent Magnet Bistable Structure Supported by Torsion and Cantilever Beam. J. Semicond., 2006, 27(1): 143.

[10]

Su Shi, Liao Xiaoping. A capacitive membrane MEMS microwave power sensor in the X-band based on GaAs MMIC technology. J. Semicond., 2009, 30(5): 054004. doi: 10.1088/1674-4926/30/5/054004

[11]

Gao Chaoqun, Jiao Binbin, Liu Maozhe, Li Quanbao, Yang Kai, Shi Shali, Li Zhigang, Ou Yi, Jing Yupeng, Chen Dapeng. MEMS/CMOS Compatible Gas Sensors Based on Spectroscopy Analysis. J. Semicond., 2008, 29(10): 2043.

[12]

Ming Anjie, Li Tie, Zhou Ping, Wang Yuelin. An Electrostatic MEMS Actuator with Large Displacement Under Low Driving Voltage. J. Semicond., 2008, 29(9): 1703.

[13]

T. Bendib, F. Djeffal, D. Arar. A compact charge-based model to study the nanoscale undoped double gate MOSFETs for nanoelectronic circuit design using genetic algorithms. J. Semicond., 2013, 34(4): 044003. doi: 10.1088/1674-4926/34/4/044003

[14]

Wu Changju, Ma Huilian, Jin Zhonghe, Wang Yuelin. A Modified Model for Etching a Sacrificial Layer in Bubble Structures. J. Semicond., 2006, 27(1): 183.

[15]

Dong Linxi, Yan Haixia, Qian Xian, Sun Lingling. A Novel Capacitive Biaxial Microaccelerometer Based on the Slide-Film Damping Effect. J. Semicond., 2008, 29(2): 219.

[16]

Zhuang Zhiwei, Wang Zheyao, Liu Litian. Design and Optimization of SOI Piezoresistive MicrocantileverSensors for Use in Surface Stress Measurement. J. Semicond., 2006, 27(10): 1844.

[17]

Li Li, Zhao Zhengping, Zhang Zhiguo, Guo Wensheng, Lü Miao, Yang Ruixia. Voltage Controlled Oscillator. J. Semicond., 2006, 27(5): 900.

[18]

Sui Xiaohong, Chen Hongda. Microfabrication and Evaluation of a Silicon MicroelectrodeBased on SOI Wafer. J. Semicond., 2008, 29(11): 2169.

[19]

Hao Yilong, Xu Jiajia, Zhang Guobing, Wu Guoying, Yan Guizhen. Design of a Silicon Beam Resonator for a Novel Gas Sensor. J. Semicond., 2006, 27(4): 658.

[20]

Zhang Jun, Liao Xiaoping, Jiao Yongchang. Microwave frequency detector at X-band using GaAs MMIC technology. J. Semicond., 2009, 30(4): 044009. doi: 10.1088/1674-4926/30/4/044009

Search

Advanced Search >>

GET CITATION

Y L Wang, T Li, X Zhang, H J Zeng, Q H Jin. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip[J]. J. Semicond., 2014, 35(8): 081001. doi: 10.1088/1674-4926/35/8/081001.

Export: BibTex EndNote

Article Metrics

Article views: 1108 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 04 June 2014 Manuscript revised: Online: Published: 01 August 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图