J. Semicond. > Volume 41?>?Issue 6?> Article Number: 062801

Low on-resistance 1.2 kV 4H-SiC power MOSFET with Ron, sp of 3.4 mΩ·cm2

Qiang Liu , , Qian Wang , Hao Liu , Chenxi Fei , Shiyan Li , Runhua Huang and Song Bai

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: A 4H-SiC power MOSFET with specific on-resistance of 3.4 mΩ·cm2 and breakdown voltage exceeding 1.5 kV is designed and fabricated. Numerical simulations are carried out to optimize the electric field strength in gate oxide and at the surface of the semiconductor material in the edge termination region. Additional n-type implantation in JFET region is implemented to reduce the specific on-resistance. The typical leakage current is less than 1 μA at VDS = 1.4 kV. Drain–source current reaches 50 A at VDS = 0.75 V and VGS = 20 V corresponding to an on-resistance of 15 mΩ. The typical gate threshold voltage is 2.6 V.

Key words: 4H-SiCelectric field strengthfloating guard ringspecific on-resistance

Abstract: A 4H-SiC power MOSFET with specific on-resistance of 3.4 mΩ·cm2 and breakdown voltage exceeding 1.5 kV is designed and fabricated. Numerical simulations are carried out to optimize the electric field strength in gate oxide and at the surface of the semiconductor material in the edge termination region. Additional n-type implantation in JFET region is implemented to reduce the specific on-resistance. The typical leakage current is less than 1 μA at VDS = 1.4 kV. Drain–source current reaches 50 A at VDS = 0.75 V and VGS = 20 V corresponding to an on-resistance of 15 mΩ. The typical gate threshold voltage is 2.6 V.

Key words: 4H-SiCelectric field strengthfloating guard ringspecific on-resistance



References:

[1]

Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 2015, 54, 4

[2]

Lichtenwalner D J, Hull B, Pala V, et al. Performance and reliability of SiC power MOSFETs. MRS Adv, 2016, 1, 2

[3]

Castellazzi A, Fayyaz A, Romano G, et al. SiC power MOSFETs performance, robustness and technology maturity. Microelectron Reliab, 2016, 58, 58

[4]

Jiang F, Sheng K, Guo Q, et al. Comparative study of temperature-dependent characteristics for SiC MOSFETs. China International Forum on Solid State Lighting, 2016, 50

[5]

Zhou W, Guo Q, Wu X, et al. A 1200 V/100 A all-SiC power module for boost converter of EV/HEV’s motor driver application. China International Forum on Solid State Lighting, 2016, 38

[6]

https://www.wolfspeed.com/power/products/sic-mosfets/cpm3-0900-0010a

[7]

https://www.wolfspeed.com/power/products/sic-mosfets/c2m0025120d

[8]

https://www.rohm.com.cn/products/sic-power-devices/sic-mosfet

[9]

https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/

[10]

Iwata H, Itoh K M. Donor and acceptor concentration dependence of the electron Hall mobility and the Hall scattering factor in n-type 4H- and 6H-SiC. J Appl Phys, 2001, 89, 6228

[11]

Chung G Y, Tin C C, Williams J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett, 2001, 22, 176

[12]

Moghadam H A, Dimitrijev S, Han J, et al. Active defects in MOS devices on 4H-SiC: A critical review. Microelectron Reliab, 2016, 60, 60

[13]

Ohashi T, Nakabayashi Y, Shimizu T, et al. Investigation of nitridation and oxidation reactions at SiC/SiO2 interfaces in NO annealing and modeling of their quantitative impacts on mobility of SiC MOSFETs. Jpn J Appl Phys, 2017, 56, 10

[14]

Fujita E, Sometani M, Hatakeyama T, et al. Insight into enhanced field-effect mobility of 4H-SiC MOSFET with Ba incorporation studied by Hall effect measurements. AIP Adv, 2018, 8, 8

[15]

Fiorenza P, Swanson L K, Vivona M, et al. Characterization of SiO2/SiC interfaces annealed in N2O or POCl3. Materials Science Forum, 2014, 623

[16]

Rong H, Sharma Y K, Mawby P A, et al. Combined N2O and phosphorus passivations for the 4H-SiC/SiO2 interface with oxide grown at 1400 °C. Materials Science Forum, 2016, 344

[17]

Lichtenwalner D J, Pala V, Hull B, et al. High-mobility SiC MOSFETs with alkaline earth interface passivation. Materials Science Forum, 2016, 671

[18]

Huang R, Liu H, Liu T, et al. Design and fabrication of 1.2 kV/40 mΩ 4H-SiC MOSFET. China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China, 2018

[1]

Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 2015, 54, 4

[2]

Lichtenwalner D J, Hull B, Pala V, et al. Performance and reliability of SiC power MOSFETs. MRS Adv, 2016, 1, 2

[3]

Castellazzi A, Fayyaz A, Romano G, et al. SiC power MOSFETs performance, robustness and technology maturity. Microelectron Reliab, 2016, 58, 58

[4]

Jiang F, Sheng K, Guo Q, et al. Comparative study of temperature-dependent characteristics for SiC MOSFETs. China International Forum on Solid State Lighting, 2016, 50

[5]

Zhou W, Guo Q, Wu X, et al. A 1200 V/100 A all-SiC power module for boost converter of EV/HEV’s motor driver application. China International Forum on Solid State Lighting, 2016, 38

[6]

https://www.wolfspeed.com/power/products/sic-mosfets/cpm3-0900-0010a

[7]

https://www.wolfspeed.com/power/products/sic-mosfets/c2m0025120d

[8]

https://www.rohm.com.cn/products/sic-power-devices/sic-mosfet

[9]

https://www.infineon.com/cms/en/product/power/mosfet/silicon-carbide/discretes/

[10]

Iwata H, Itoh K M. Donor and acceptor concentration dependence of the electron Hall mobility and the Hall scattering factor in n-type 4H- and 6H-SiC. J Appl Phys, 2001, 89, 6228

[11]

Chung G Y, Tin C C, Williams J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett, 2001, 22, 176

[12]

Moghadam H A, Dimitrijev S, Han J, et al. Active defects in MOS devices on 4H-SiC: A critical review. Microelectron Reliab, 2016, 60, 60

[13]

Ohashi T, Nakabayashi Y, Shimizu T, et al. Investigation of nitridation and oxidation reactions at SiC/SiO2 interfaces in NO annealing and modeling of their quantitative impacts on mobility of SiC MOSFETs. Jpn J Appl Phys, 2017, 56, 10

[14]

Fujita E, Sometani M, Hatakeyama T, et al. Insight into enhanced field-effect mobility of 4H-SiC MOSFET with Ba incorporation studied by Hall effect measurements. AIP Adv, 2018, 8, 8

[15]

Fiorenza P, Swanson L K, Vivona M, et al. Characterization of SiO2/SiC interfaces annealed in N2O or POCl3. Materials Science Forum, 2014, 623

[16]

Rong H, Sharma Y K, Mawby P A, et al. Combined N2O and phosphorus passivations for the 4H-SiC/SiO2 interface with oxide grown at 1400 °C. Materials Science Forum, 2016, 344

[17]

Lichtenwalner D J, Pala V, Hull B, et al. High-mobility SiC MOSFETs with alkaline earth interface passivation. Materials Science Forum, 2016, 671

[18]

Huang R, Liu H, Liu T, et al. Design and fabrication of 1.2 kV/40 mΩ 4H-SiC MOSFET. China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China, 2018

[1]

Song Kun, Chai Changchun, Yang Yintang, Jia Hujun, Zhang Xianjun, Chen Bin. Characteristics and optimization of 4H-SiC MESFET with a novel p-type spacer layer incorporated with a field-plate structure based on improved trap models. J. Semicond., 2011, 32(7): 074003. doi: 10.1088/1674-4926/32/7/074003

[2]

Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei, Haiqing Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate. J. Semicond., 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006

[3]

Chen Gang, Bai Song, Zhang Tao, Wang Hao, Li Zheyang, Jiang Youquan. 4H-SiC MESFET Device Process. J. Semicond., 2007, 28(S1): 565.

[4]

Chen Gang, Li Zheyang, Bai Song, Ren Chunjiang. Ti/4H-SiC Schottky Barrier Diodes with Field Plate and B+ Implantation Edge Termination Technology. J. Semicond., 2007, 28(9): 1333.

[5]

Zhang Xianjun, Yang Yintang, Chai Changchun, Duan Baoxing, Song Kun, Chen Bin. Effect of a gate buffer layer on the performance of a 4H-SiC Schottky barrier field-effect transistor. J. Semicond., 2012, 33(7): 074003. doi: 10.1088/1674-4926/33/7/074003

[6]

Ji Gang, Sun Guosheng, Liu Xingfang, Wang Lei, Zhao Wanshun, Zeng Yiping, Li Jinmin. Epitaxial growth on 4H-SiC by TCS as a silicon precursor. J. Semicond., 2009, 30(9): 093006. doi: 10.1088/1674-4926/30/9/093006

[7]

Yang Weifeng, Cai Jiafa, Zhang Feng, Liu Zhuguang, Lü Ying, Wu Zhengyun. Fabrication of 4H-SiC MSM Photodiode Linear Arrays. J. Semicond., 2008, 29(3): 570.

[8]

Dai Zhenqing, Yang Ruixia, Yang Kewu. Temperature-Dependent 4H-SiC MOSFET Channel-Electron Mobility Model for Circuit Simulation. J. Semicond., 2007, 28(8): 1252.

[9]

Wu Hailei, Sun Guosheng, Yang Ting, Yan Guoguo, Wang Lei, Zhao Wanshun, Liu Xingfang, Zeng Yiping, Wen Jialiang. Effect of annealing process on the surface roughness in multiple Al implanted 4H-SiC. J. Semicond., 2011, 32(7): 072002. doi: 10.1088/1674-4926/32/7/072002

[10]

Ning Jin, Liu Zhongli, Gao Jiantou. Electrical Characteristics of n-Type 4H-SiC MOS Capacitor. J. Semicond., 2005, 26(S1): 140.

[11]

Gao Jinxia, Zhang Yimen, Zhang Yuming. Study of Electron Mobility in 4H-SiC Buried-Channel MOSFETs. J. Semicond., 2006, 27(2): 283.

[12]

Wu Hailei, Sun Guosheng, Yang Ting, Yan Guoguo, Wang Lei, Zhao Wanshun, Liu Xingfang, Zeng Yiping, Wen Jialiang. High-quality homoepitaxial layers grown on 4H-SiC at a high growth rate by vertical LPCVD. J. Semicond., 2011, 32(4): 043005. doi: 10.1088/1674-4926/32/4/043005

[13]

Ye Fan, Xiaorong Luo, Kun Zhou, Yuanhang Fan, Yongheng Jiang, Qi Wang, Pei Wang, Yinchun Luo, Bo Zhang. An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement. J. Semicond., 2014, 35(3): 034011. doi: 10.1088/1674-4926/35/3/034011

[14]

Li Zheyang, Dong Xun, Zhang Lan, Chen Gang, Bai Song, Chen Chen. Epitaxial Growth on 4° Off-Oriented 75mm 4H-SiC Substrates by Horizontal Hot-Wall CVD. J. Semicond., 2008, 29(7): 1347.

[15]

Zhu Huili, Chen Xiaping, Wu Zhengyun. Separate Absorption and Multiplication 4H-SiC UltravioletAvalanche Photodetector. J. Semicond., 2007, 28(2): 284.

[16]

Yang Weifeng, Yang Keqin, Chen Xiaping, Zhang Feng, Wang Liangjun, Wu Zhengyun. Anealing Effect on Cu/ Ni/4H-SiC Schottky Barrier. J. Semicond., 2005, 26(S1): 277.

[17]

Wang Chao, Zhang Yimen, Zhang Yuming, Wang Yuehu, Xu Daqing. Deep Level Transient Fourier Spectroscopy and Photoluminescence of Vanadium Acceptor Level in n-Type 4H-SiC. J. Semicond., 2008, 29(2): 240.

[18]

Duan Baoxing, Yang Yintang, Zhang Bo, Li Zhaoji. An Ultra-Low Specific On-Resistance VDMOS with a Step Oxide-Bypassed Trench Structure. J. Semicond., 2008, 29(4): 677.

[19]

Kun Mao, Ming Qiao, Bo Zhang, Zhaoji Li. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage. J. Semicond., 2014, 35(5): 054004. doi: 10.1088/1674-4926/35/5/054004

[20]

Qing Xu, Xiaorong Luo, Kun Zhou, Ruichao Tian, Jie Wei, Yuanhang Fan, Bo Zhang. Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect. J. Semicond., 2015, 36(2): 024010. doi: 10.1088/1674-4926/36/2/024010

Search

Advanced Search >>

GET CITATION

Q Liu, Q Wang, H Liu, C X Fei, S Y Li, R H Huang, S Bai, Low on-resistance 1.2 kV 4H-SiC power MOSFET with Ron, sp of 3.4 mΩ·cm2[J]. J. Semicond., 2020, 41(6): 062801. doi: 10.1088/1674-4926/41/6/062801.

Export: BibTex EndNote

Article Metrics

Article views: 374 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 04 July 2019 Manuscript revised: 20 January 2020 Online: Accepted Manuscript: 26 March 2020 Uncorrected proof: 02 April 2020 Published: 01 June 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图