J. Semicond. > Volume 41?>?Issue 5?> Article Number: 051203

The strategies for preparing blue perovskite light-emitting diodes

Jianxun Lu and Zhanhua Wei ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Metal halide perovskites have attracted tremendous interest due to their excellent optical and electrical properties, and they find many promising applications in the optoelectronic fields of solar cells, light-emitting diodes, and photodetectors. Thanks to the contributions of international researchers, significant progress has been made for perovskite light-emitting diodes (Pero-LEDs). The external quantum efficiencies (EQEs) of Pero-LEDs with emission of green, red, and near-infrared have all exceeded 20%. However, the blue Pero-LEDs still lag due to the poor film quality and deficient device structure. Herein, we summarize the strategies for preparing blue-emitting perovskites and categorize them into two: compositional engineering and size controlling of the emitting units. The advantages and disadvantages of both strategies are discussed, and a perspective of preparing high-performance blue-emitting perovskite is proposed. The challenges and future directions of blue Pero-LEDs fabrication are also discussed.

Key words: perovskitebluelight-emitting diodes

Abstract: Metal halide perovskites have attracted tremendous interest due to their excellent optical and electrical properties, and they find many promising applications in the optoelectronic fields of solar cells, light-emitting diodes, and photodetectors. Thanks to the contributions of international researchers, significant progress has been made for perovskite light-emitting diodes (Pero-LEDs). The external quantum efficiencies (EQEs) of Pero-LEDs with emission of green, red, and near-infrared have all exceeded 20%. However, the blue Pero-LEDs still lag due to the poor film quality and deficient device structure. Herein, we summarize the strategies for preparing blue-emitting perovskites and categorize them into two: compositional engineering and size controlling of the emitting units. The advantages and disadvantages of both strategies are discussed, and a perspective of preparing high-performance blue-emitting perovskite is proposed. The challenges and future directions of blue Pero-LEDs fabrication are also discussed.

Key words: perovskitebluelight-emitting diodes



References:

[1]

Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687

[2]

Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222

[3]

Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248

[4]

Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699

[5]

Yuan M, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872

[6]

Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics, 2019, 13, 418

[7]

Lin K, Lu J, Xie L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245

[8]

Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681

[9]

Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633

[10]

Fang T, Zhang F, Yuan S, et al. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. Informat, 2019, 1, 211

[11]

Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br(1– x)Cl x)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119

[12]

Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095

[13]

Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162

[14]

Bohn B J, Tong Y, Gramlich M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett, 2018, 18, 5231

[15]

Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897

[16]

Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720

[17]

Liu Y, Cui J, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics, 2019, 13, 760

[18]

Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536, 312

[19]

Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206

[20]

Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv, 2019, 5, eaav0693

[21]

Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404, 59

[22]

Gangishetty M K, Hou S, Quan Q, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, e1706226

[23]

Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater, 2016, 26, 4797

[24]

Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B, 1998, 58, 7260

[25]

Todorovi? P, Ma D, Chen B, et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater, 2019, 7, 1901440

[26]

Jiang Y, Qin C, Cui M, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868

[27]

Leng M, Yang Y, Chen Z, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett, 2018, 18, 6076

[28]

Tan Z, Li J, Zhang C, et al. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv Funct Mater, 2018, 28, 1801131

[29]

Chen P, Meng Y, Ahmadi M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615

[30]

Xing J, Zhao Y, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541

[31]

Shang Y, Li G, Liu W, et al. Quasi-2D Inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv Funct Mater, 2018, 28, 1801193

[32]

Yang D, Zou Y, Li P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235

[33]

Meng F, Liu X, Cai X, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295

[34]

Zou Y, Xu H, Li S, et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics, 2019, 6, 1728

[35]

Tan Z, Luo J, Yang L, et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater, 2020, 8, 1901094

[36]

Ren Z, Xiao X, Ma R, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339

[37]

Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901

[38]

Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920

[39]

Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421

[40]

Deng W, Jin X, Lv Y, et al. 2D Ruddlesden–Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater, 2019, 29, 1903861

[41]

Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, e1904319

[42]

Li G, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater, 2016, 28, 3528

[43]

Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718

[44]

Leng M, Yang Y, Zeng K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv Funct Mater, 2018, 28, 1704446

[45]

Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83

[46]

Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655

[47]

Yang F, Chen H, Zhang R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater, 2020, 30, 1908760

[48]

Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ions doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 14195

[49]

Lu W, Chen C, Han D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique. Adv Opt Mater, 2016, 4, 1732

[50]

Zhang F, Xiao C, Li Y, et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy. Front Chem, 2018, 6, 444

[1]

Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687

[2]

Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222

[3]

Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248

[4]

Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699

[5]

Yuan M, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872

[6]

Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics, 2019, 13, 418

[7]

Lin K, Lu J, Xie L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245

[8]

Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681

[9]

Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633

[10]

Fang T, Zhang F, Yuan S, et al. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. Informat, 2019, 1, 211

[11]

Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br(1– x)Cl x)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119

[12]

Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095

[13]

Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162

[14]

Bohn B J, Tong Y, Gramlich M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett, 2018, 18, 5231

[15]

Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897

[16]

Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720

[17]

Liu Y, Cui J, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics, 2019, 13, 760

[18]

Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536, 312

[19]

Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206

[20]

Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv, 2019, 5, eaav0693

[21]

Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404, 59

[22]

Gangishetty M K, Hou S, Quan Q, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, e1706226

[23]

Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater, 2016, 26, 4797

[24]

Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B, 1998, 58, 7260

[25]

Todorovi? P, Ma D, Chen B, et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater, 2019, 7, 1901440

[26]

Jiang Y, Qin C, Cui M, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868

[27]

Leng M, Yang Y, Chen Z, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett, 2018, 18, 6076

[28]

Tan Z, Li J, Zhang C, et al. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv Funct Mater, 2018, 28, 1801131

[29]

Chen P, Meng Y, Ahmadi M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615

[30]

Xing J, Zhao Y, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541

[31]

Shang Y, Li G, Liu W, et al. Quasi-2D Inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv Funct Mater, 2018, 28, 1801193

[32]

Yang D, Zou Y, Li P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235

[33]

Meng F, Liu X, Cai X, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295

[34]

Zou Y, Xu H, Li S, et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics, 2019, 6, 1728

[35]

Tan Z, Luo J, Yang L, et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater, 2020, 8, 1901094

[36]

Ren Z, Xiao X, Ma R, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339

[37]

Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901

[38]

Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920

[39]

Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421

[40]

Deng W, Jin X, Lv Y, et al. 2D Ruddlesden–Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater, 2019, 29, 1903861

[41]

Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, e1904319

[42]

Li G, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater, 2016, 28, 3528

[43]

Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718

[44]

Leng M, Yang Y, Zeng K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv Funct Mater, 2018, 28, 1704446

[45]

Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83

[46]

Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655

[47]

Yang F, Chen H, Zhang R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater, 2020, 30, 1908760

[48]

Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ions doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 14195

[49]

Lu W, Chen C, Han D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique. Adv Opt Mater, 2016, 4, 1732

[50]

Zhang F, Xiao C, Li Y, et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy. Front Chem, 2018, 6, 444

[1]

Jiang Weiwei, Zhao Suling, Zhang Fujun, Xu Zheng. Luminescence Characteristics of a Blue-Green Emission Thin Film Electroluminescence Device Based on a ZnSe Emitting Layer. J. Semicond., 2008, 29(4): 754.

[2]

Nian Liu, Xue Zhao, Mengling Xia, Guangda Niu, Qingxun Guo, Liang Gao, Jiang Tang. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons. J. Semicond., 2020, 41(5): 052204. doi: 10.1088/1674-4926/41/5/052204

[3]

Boning Han, Qingsong Shan, Fengjuan Zhang, Jizhong Song, Haibo Zeng. Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. J. Semicond., 2020, 41(5): 052205. doi: 10.1088/1674-4926/41/5/052205

[4]

Yan Lei, Zhiqiang Liu, Miao He, Xiaoyan Yi, Junxi Wang, Jinmin Li, Shuwen Zheng, Shuti Li. Enhancement of blue InGaN light-emitting diodes by using AlGaN increased composition-graded barriers. J. Semicond., 2015, 36(5): 054006. doi: 10.1088/1674-4926/36/5/054006

[5]

Pingbo An, Li Wang, Hongxi Lu, Zhiguo Yu, Lei Liu, Xin Xi, Lixia Zhao, Junxi Wang, Jinmin Li. Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method. J. Semicond., 2016, 37(6): 064015. doi: 10.1088/1674-4926/37/6/064015

[6]

Wen Jing, Wen Yumei, Li Ping, Li Lian. Current–voltage characteristics of light-emitting diodes under optical and electrical excitation. J. Semicond., 2011, 32(8): 084004. doi: 10.1088/1674-4926/32/8/084004

[7]

Huamao Huang, Jinyong Hu, Hong Wang. GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer. J. Semicond., 2014, 35(8): 084006. doi: 10.1088/1674-4926/35/8/084006

[8]

Li Zhicong, Li Panpan, Wang Bing, Li Hongjian, Liang Meng, Yao Ran, Li Jing, Deng Yuanming, Yi Xiaoyan, Wang Guohong, Li Jinmin. Improved III-nitrides based light-emitting diodes anti-electrostatic discharge capacity with an AlGaN/GaN stack insert layer. J. Semicond., 2011, 32(11): 114007. doi: 10.1088/1674-4926/32/11/114007

[9]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[10]

Jingming Chen, Bin Shu, Jibao Wu, Linxi Fan, Heming Zhang, Huiyong Hu, Rongxi Xuan, Jianjun Song. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode. J. Semicond., 2015, 36(10): 104004. doi: 10.1088/1674-4926/36/10/104004

[11]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[12]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[13]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[14]

He Linxiang, Peng Gang, Yang Weiming, Zheng Chaodan, Yu Jun, Wang Yunbo. Preparation and Phase Analysis of PZT Ceramic Targets. J. Semicond., 2007, 28(5): 711.

[15]

Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201

[16]

Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

[17]

Dongxue Wu, Ping Ma, Boting Liu, Shuo Zhang, Junxi Wang, Jinmin Li. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates. J. Semicond., 2016, 37(10): 104003. doi: 10.1088/1674-4926/37/10/104003

[18]

Chang Ge, Jing Li, Guohong Wang, Kang Su, Xingdong Lu. Size effect on optical performance of blue light-emitting diodes. J. Semicond., 2019, 40(10): 102301. doi: 10.1088/1674-4926/40/10/102301

[19]

Kewei Cao, Binglei Fu, Zhe Liu, Lixia Zhao, Jinmin Li, Junxi Wang. Anomalous luminescence efficiency enhancement of short-term aged GaN-based blue light-emitting diodes. J. Semicond., 2016, 37(1): 014008. doi: 10.1088/1674-4926/37/1/014008

[20]

Jingbi You. Rational molecular passivation for high-performance perovskite light-emitting diodes. J. Semicond., 2019, 40(4): 040203. doi: 10.1088/1674-4926/40/4/040203

Search

Advanced Search >>

GET CITATION

J X Lu, Z H Wei, The strategies for preparing blue perovskite light-emitting diodes[J]. J. Semicond., 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203.

Export: BibTex EndNote

Article Metrics

Article views: 471 Times PDF downloads: 66 Times Cited by: 0 Times

History

Manuscript received: 08 March 2020 Manuscript revised: 28 March 2020 Online: Accepted Manuscript: 23 April 2020 Uncorrected proof: 07 May 2020 Published: 13 May 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误
XML 地图 | Sitemap 地图